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Abstract. Reliable attitude information is desired for navigation and control of rotor unmanned aerial 
vehicles (UAV). Rotor UAV's attitude can be determined by fusing redundant data from MEMS 
MARG (Magnetic, Angular Rate, and Gravity) sensors with fusion techniques. The extended Kalman 
filter (EKF)-based fusion algorithms are commonly adopted. However, there exists a contradiction 
between convergence speed and noise suppression in EKF-based algorithms. This paper presents a 
novel fusion algorithm combining EKF with complementary filter to estimate the attitude of rotor UAV. 
Firstly, gyros’ measurements of angular rates are corrected by measurements of accelerometers with a 
Mahony passive complementary filter. The corrected angular rates as well as the measurements of 
accelerometers and magnetometers are then input to an EKF to implement data fusion. Results of 
validation experiments show that the proposed fusion method can generate attitude angles accurately 
and fuse multi-sensor data efficiently. 

Introduction 
A rotor UAV desires an inexpensive and small attitude and heading reference system (AHRS) to 
determine its attitude. The low-cost AHRS can be constructed with MEMS MARG sensors which 
contain triaxial gyros, triaxial accelerometers and triaxial magnetometers [1,2]. Because a MEMS gyro 
has a large drift and unneglectable static bias, its attitude information after long hours is not accurate. 
Similarly, outputs of accelerometers and magnetometers are not reliable since accelerometers are 
susceptible to the impact of vibration, acceleration and deceleration, while the magnetometers are 
susceptible to the impact of magnetic noise. As a result, the MEMS MARG sensors cannot be used 
separately. Outputs of triaxial accelerometers, triaxial magnetometers and triaxial gyros have to be 
integrated to form a reliable attitude output of rotor UAV [3,4]. Many algorithms are proposed for the 
fusion of redundant multi-sensor data [5-7].  

A digital filter is usually used for removing the noise and disturbs from an input signal in a 
single-input and single-output system. Some digital filters, such as extended Kalman filter (EKF) and 
complementary filter, have a signal fusion ability in a multiple-input and multiple-output system [8,9]. 
The EKF-based fusion algorithms are thus commonly used for data fusion. However, there exists a 
contradiction between convergence speed and noise suppression in EKF-based algorithms. This paper 
presents a new fusion method combing extended Kalman filter with Mahony passive complementary 
filter. Firstly, gyros’ measurements of angular rates are corrected by measurements of accelerometers 
with a Mahony passive complementary filter. The corrected angular rates as well as the measurements 
of accelerometers and magnetometers are then input to an EKF to implement data fusion. Finally, 
validation experiments are implemented to prove the effectiveness of the presented algorithm. 

Complementary Filter  
The classical complementary filter is composed of a high pass filter and a low pass filter. It has a good 
effect for fusing high bandwidth position measurements and low bandwidth rate measurements of the 
first order kinematic systems. For a position variable x , its rate variable υ  can be expressed as xυ = & , 
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and its measurements xy  can be expressed as x xy x µ= +  where xµ  is the high frequency noise. For 
the rate variable υ , its measurements yυ  can be expressed as ( )y b tυ υυ µ= + +  where υµ  is the low 
frequency noise and ( )b t  is the static bias varying with time. 

Fig. 1 shows a block diagram of a classical complementary filter to fuse the position measurements 
xy  with the rate measurements yυ , where ( )C s  is a compensator. According to the principle of 

superposition, the fusing result x̂  is written in the form of 

( )ˆ
( ) ( )

 ( ) ( )

x

x

ys C sx y
s C s s s C s

yF s G s y
s

υ

υ

= +
+ +

= +
                                                                                                              (1) 

where ( )F s  represents a high pass filter, ( )G s  represents a low pass filter, and ( ) ( ) 1F s G s+ = . In 
general, the overall filter is considered covering the whole frequency domain. If ( ) PC s k= , s jω= , 
then ( )F s and ( )G s can be written as 1/ (1 / )pjk ω−  and 1/ (1 / )pj kω+  where ω  represents input 
angular frequency. The crossover frequency of the high pass filter and the low pass filter is / 2pk π . 

An unsolved problem of the classical complementary filter is the static bias ( )b t . Because of the 
effect of integral /y sυ , the error caused by static bias will be accumulated. If the static bias ( )b t  is 
assumed to be a constant 0b , it is possible to add an integrator into the compensator ( )C s  to eliminate 

the error. This results a so-called Mahony passive complementary filter where ( ) /P IC s k k s= + . Only 
in the absence of noise, the convergence of the state estimate can be proved by Lyapunov’s direct 
method. It means some glitches and spikes caused by noise will be introduced to the fusion results 
through integral. 

Extended Kalman Filter 

The Kalman filter addresses the problem of trying to estimate the state vector n∈x R  [10]. In the 
application of fusing multi-sensor data, the input measurements are divided into two groups. One 
group of measurements comes from the main sensor which will be applied to figure out the priori state 
estimate ˆ k

−x  and it can be written as 

1ˆ ˆ( , ,0)k k kf−
−=x x u                                                                                                                                      (2) 

where 1ˆ k−x  represents the posteriori state estimate at step k-1, l
k ∈u R represents the control input at 

step k. Eq. 2 is a non-linear stochastic difference equation. 
The other group of measurements comes from the auxiliary sensors that will be regarded as 

measurement vector m∈z R  and the measurement prediction ˆkz  can be calculated with the priori state 
estimate ˆ k

−x  in the form of 

ˆˆ ( ,0)k kh −=z x                                                                                                                                                (3) 

It is possible to construct the posteriori state estimate ˆ kx  at step k, based on the compensation error 
of ˆ k

−x  obtained with the difference value between z  and ˆkz . If Eq. 2 and Eq. 3 are nonlinear, the 
traditional Kalman filter can do nothing and the EKF is thus developed to deal with the nonlinear 
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problem. By means of Taylor expansion, the Jacobian matrix A  of partial derivatives of f  and 
Jacobian matrix H  of partial derivatives of h  with respect to x  are given by 
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The estimate of state x  is an iterative process. After each sampling interval, the measurements have 
to be taken into an iterative formula. The iterative formula, i.e. the discrete extended Kalman filter is 
expressed as 
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where kQ and kR represent the process noise covariance and measurement noise covariance, k
−P  and 

kP  represent priori and posteriori estimate error covariance, the matrix kK  is the gain or blending 
factor that minimizes the posteriori estimate error covariance. The measurement noise covariance kR  
plays an important role in the performance of final fusion results. If we increase kR , the convergence 
speed of the filter will slow down and the curves of state estimate become smoother, and the effect of 
measurement vector kz  will be reduced. However, we hope that the measurement vector kz  can still 
affect the priori state estimate ˆ k

−x  effectively when the noise is filtered. 

Complementary Filter for Attitude Estimation  
To design a complementary filter for attitude estimation, we define a body fixed coordinate frame, 
denoted b, with xb indicating the front, yb indicating the right, and zb indicating the bottom and a 
navigation coordinate frame, denoted n, with xn indicating the North, yn indicating the East, and zn 
indicating the ground. The rotation transformation from navigation coordinate frame n to body fixed 
coordinate frame b can be achieved by a normalized quaternion, i.e. [ ]0 1 2 3

b
n q q q q=q . 

Quaternions are used to represent the orientations which can avoid the singularity problem appeared in 
the algorithms using Euler angles [11,12]. 

The measurements of MEMS triaxial gyros, triaxial accelerometers and triaxial magnetometers 
about the x, y and z axes of the senor frame are respectively arranged into zero-scalar quaternions, 
i.e. 0b

x y zω ω ω =  Ω , 0b
x y za a a =  a , 0b

x y zm m m =  m where quaternions ba  
and bm  have been normalized.  In addition, an appropriate convention would be to assume that the 
direction of the gravity n g  parallels to the vertical axis zn, i.e. [ ]0 0 0 1n =g and the earth’s 
magnetic field nb  consists of components in horizontal axis xn and vertical axis zn due to the inclination 
of the field, i.e. 0 0n

x yb b =  b . 
As has been discussed, the drift and static bias of gyros’ measurements have a great influence on the 

quaternions. Therefore, a compensation error e  has to be introduced to correct the measurements of 
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angular rates. Noting that the correction information comes from accelerometers and magnetometers, 
the compensation error e  is divided into two parts, ξ  and ε  for further calculation. 

Considering that the measurements of accelerometers are expressed in the body fixed coordinates, 
the quaternion n g  has to be converted to the body fixed coordinate too. The process of calculating 
error component ξ  can be described as 

*
1 1ˆ ˆ 0

0 ' '

b b n b
k n k n k x y z

b b
k k

g g g− −
  = ⊗ ⊗ =  


 = ×  

g q g q

ξ g a
                                                                                 (6) 

where 'b
k x y zg g g =  g , 'b

k x y za a a =  a and operator ⊗  denotes a quaternion product. 
The earth’s magnetic field nb  can be calculated with the measurements of magnetometers by 
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When the calculation of quaternion nb  is completed, the remaining process to calculate the error 
component ε  are similar to the process of calculating the error component ξ , and it can be given by 

*
1 1ˆ ˆ 0

0 ' '
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k k
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p q b q

ε m p
                                                                            (8) 

where 'b
k x y zp p p =  p , 'b

k x y zm m m =  m . Taking sum of ε  and ξ , the final 
compensation error e  can be obtained. Fig. 2 shows the block diagram of the overall operation process 
of a Mahony passive complementary filter in the application of estimating attitude angles based on 
quaternions. The function 1ˆ( , , , , )b n b b b

n k k k kf −q g a m b  in Fig. 2 expresses the solution of compensation 
error e  as given above. 
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Fig. 1 Block diagram of classical complementary filter             Fig. 2 Block diagram of Mahony filter 

Extended Kalman Filter for Attitude Estimation 
Before employing the Extended Kalman filter to estimate attitudes, the state vector x  and 
measurement vector z  have to be determined. Since quaternions are adopted to represent the 
orientations, the state vector x  must contain the element of quaternion b

n q , i.e. 
[ ]0 1 2 3q q q q=x . 

As described above, the MEMS triaxial gyros are regarded as the main sensor whose measurements 
will be used to calculate the priori state estimate ˆ k

−x . The accelerometers and magnetometers are 
regarded as the auxiliary sensors to provide measurement vector z  which is  in the form of 
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b b =  z a m . According to the quaternion differential equations, the exact form of Eq. 2 based on 
first order Runge-Kutta method is achieved as 

1 1ˆ ˆ ˆ '
2

b b
k k n k k

T−
− − = + ⊗ x x q Ω                                                                                                               (9) 

where ' 0 ω ω ωb
k x x y y z zω ω ω∆ ∆ = − − − Ω   and ω x∆ , ω y∆ , ω z∆  represent the static bias of gyros 

which are assumed to be the constants. In order to get the iterative formula as Eq. 5, the measurement 
prediction vector ˆkz  must be constructed. Assuming that accelerometers only measure gravity and 
magnetometers only measure the earth’s magnetic field, the exact form of Eq. 3 can be obtained 
through the convention of n g , nb  as 

*
1 1
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Once the process function f  and measurement function h  are determined, the orientation 
quaternion can be determined for each iteration by using the discrete extended Kalman filter as Eq. 5. 

The Proposed Fusion Method for Attitude Estimation 
The proposed fusion method adopts a Mahony passive complementary filter to correct the angular 
rates measured by gyros. This means the PI controller mentioned above will be applied to compensate 
the error caused by static bias and drifts, i.e. ' 0b

k x x y y z zω δω ω δω ω δω = − − − Ω  where 

xδω , yδω , zδω  represent the calculated values of static bias and drifts which are similar to 
ω x∆ , ω y∆ , ω z∆  appeared in traditional EKF method. The difference between xδω , yδω , zδω  and 
ω x∆ , ω y∆ , ω z∆  lies that xδω , yδω , zδω  are varying with time rather than constants. In fact, it is 
impossible for static bias and drifts of angular rates measured by gyros to be constants due to a variety 
of factors such as temperature, vibration, collision and so on. The block diagram of the proposed fusion 
method is described in Fig. 3. 
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Fig. 3 Block diagram of the proposed fusion method                   Fig. 4 The MEMS MARG sensors 

As shown in Fig. 3, the measurements of accelerometers b
ka  are used to correct the measurements 

of gyros b
kΩ  with a Mahony passive complementary filter. In other words, in the error components of 

ξ  and ε , only ξ  is preserved for the reason that the error component ξ  contains the information of 
pitch and roll angles while the error component ε  is relative to yaw angle. Moreover, the fusion 
strategy of Mahony passive complementary filter in attitude estimation of rotor UAV does not consider 
the interaction of each other. If we simply stack the error components, the phenomenon of deviation 
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from true value of attitude angles will happen. For the rotor UAV, we emphasize the accuracy of pitch 
and roll angles. The measurements of gyros 'b

kΩ  corrected by real-time value of xδω , yδω , zδω  are 

fused with the measurements of accelerometers and magnetometers b
ka , b

km  through the discrete 
EKF. The output of EKF is the quaternion ˆb

n kq , which contains the information of attitude angles of 
rotor UAV. 

Experiment 
A miniature module of MEMS MARG sensors composed of MPU6050 and HMC5883L is shown in 
Fig. 4. The triaxial accelerometers and triaxial gyros are integrated in MPU6050, and the triaxial 
magnetometers are integrated in HMC5883L. In fact, the MEMS triaxial accelerometers and triaxial 
magnetometers constitute a 3D E-Compass. A DSP controller is adopted to fulfill the task of sampling. 
The collected measurements will be input to PC to do data fusion. 

To test the performance of the proposed fusion algorithm, experiments are conducted as follows. 
Firstly, without using any fusion algorithms, two sets of attitude angles are derived from the 
measurements of MEMS triaxial gyros and the measurements of 3D E-Compass. Then, taking the 
measurements of magnetic, angular rate and gravity sensors as inputs, three sets of attitude angles are 
achieved with three fusion algorithms, i.e., extended Kalman filter, Mahony passive complementary 
filter and the proposed method. Results of these experiments are shown in Fig. 5, Fig. 6 and Fig 7. 

Fig. 5 shows the comparison of attitude angles obtained with non-fusion methods. It is obvious that 
the curves of roll, pitch, yaw angles obtained from 3D E-Compass are full of glitches and spikes 
because the accelerometers are susceptible to vibration, acceleration and deceleration, and the 
magnetometers are susceptible to magnetic noise. In contrast, the curves of roll, pitch, yaw angles 
obtained from gyros don't exist this problem, but fluctuations of amplitude over time are increased due 
to the drifts and static bias accumulated through integral. 
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Fig. 5 The comparison of attitude angles obtained with non-fusion methods 

Fig. 6 shows the comparison of attitude angles obtained with two fusion algorithms (EKF and 
Mahony filter) and with non-fusion method (derived from 3D E-Compass). In this way, the curves 
from accelerometers and magnetometers, i.e. the 3D E-Compass can be used to determine the accuracy 
of fusion algorithms. It indicates that the extended Kalman filter has higher estimating accuracy than 
Mahony passive complementary filter, since the simple stack of compensation error components ξ  
and ε  causes the deviation of final attitude estimation. But in terms of waveforms, the curves of 
attitude angles from Mahony passive complementary filter are smoother than that of EKF. 
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Fig. 6 The comparison of attitude angles obtained with fusion algorithms (EKF and Mahony filter) and with 

non-fusion method (3D E-Compass) 
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Fig. 7 shows the comparison of attitude angles obtained with three fusion algorithms. It can be 
found that the proposed fusion algorithm has the same accuracy of extended Kalman filter and 
improves the convergence speed at the same time. In addition, the proposed fusion algorithm also has 
the capacity of smoothing spikes, which is possessed by Mahony passive complementary filter. 
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Fig. 7 The comparison of attitude angles obtained with different fusion algorithms 

Conclusions 
This paper presents a fusion algorithm combining EKF with complementary filter to estimate the 
attitude of rotor UAV based on MEMS MARG sensors. The measurements of accelerometers are used 
to correct the measurements of gyros with a Mahony passive complementary filter. The corrected 
measurements of gyros are fused with the measurements of accelerometers and magnetometers 
through a discrete EKF. The output of the discrete EKF is the quaternion, which contains the 
information of attitude angles of rotor UAV. Results of comparison experiments show that the 
proposed fusion algorithm can improve the accuracy and reliability, and has the advantages of both 
EKF and Mahony passive complementary filter. The curves of roll, pitch and yaw angles become 
smoother as glitches and spikes are reduced, especially the fluctuations caused by drifts and static bias 
are under control by using the proposed fusion algorithm. 
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