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In this paper, a new distribution called the exponentiated Kumaraswamy inverse Weibull is proposed. This dis-
tribution includes as special cases the inverse exponential, inverse Weibull, inverse Rayleigh and exponentiated
inverse Weibull distributions. We study the main properties of this distribution, with special emphasis on its
moments and some characteristics related to reliability studies. We also discuss parameter estimation consider-
ing the methods of moments and maximum likelihood. An application reveals that the model proposed can be
very useful in fitting real data.
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1. Introduction

The inverse Weibull distribution usually used in reliability and biological studies. For many years,
researchers have been developing various extensions and modified forms of the inverse Weibull dis-
tribution. Recently, [2] introduced an extension of the inverse Weibull distribution called the beta
generalized inverse Weibull distribution. [5] defined a three-parameter generalized inverse Weibull
distribution with decreasing and unimodal failure rate. [9] proposed the modified inverse Weibull
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distribution and discussed its various properties. [10] introduced and studied a four-parameter dis-
tribution, so-called the beta inverse Weibull distribution and [13] introduced and studied a four-
parameter Inverse Weibull distribution.

The cumulative distribution function (CDF) and probability density function (PDF) of the
inverse Weibull distribution are given by

G(x;α,β ) = exp
[
−
(α

x

)β
]

(1.1)

and

g(x;α,β ) = βαβ x−(β+1) exp
[
−
(α

x

)β
]

(1.2)

respectively, where x > 0, α > 0 and β > 0.
In this paper, a new distribution called the exponentiated Kumaraswamy inverse Weibull is pro-

posed. This distribution includes as special cases the inverse exponential, inverse Weibull, inverse
Rayleigh and exponentiated inverse Weibull distributions.The study examines various properties of
the new model. The flexibility of this distribution is illustrated in an application to a real data set.

The rest of the paper is organized as follows. In Section 2 the exponentiated Kumaraswamy
inverse Weibull distribution is defined and some special sub-models are discussed. Various struc-
tural properties including moments, mean deviations and Rényi entropy of the exponentiated
Kumaraswamy inverse Weibull distribution are explored in Section 3. Characterizations of the new
model are presented in Section 4. The estimation of the model parameters using the methods of
moments and maximum likelihood is discussed in Section 5. Finally, in Section 6 an application on
a real data set is reported.

2. The model

[11] introduced a two-parameter distribution, known as Kumaraswamy distribution, given by its
CDF

F (x;λ ,η) = 1−
(

1− xλ
)η

(2.1)

where 0 < x < 1, λ > 0 and η > 0. The corresponding CDF for (2.1) is given by

f (x;λ ,η) = ληxλ−1
(

1− xλ
)η−1

(2.2)

The Kumaraswamy distribution has been identified as a viable alternative to Beta distribu-
tion because they both have the same basic shape properties (unimodal, uniantimodal, increasing,
decreaing, monotone or constant). However, the PDF given in Equation 2.2 does not involve any
incomplete beta function ratio and it is regarded as being tractable because of its mild algebraic
properties. Recently, [12] proposed a generalization of the Kumaraswamy distribution, so-called the
exponentiated Kumaraswamy distribution. The CDF and PDF of the exponentiated Kumaraswamy
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distribution are given by

F (x;λ ,η ,θ) =
[
1−
(

1− xλ
)η]θ

(2.3)

and

f (x;λ ,η ,θ) = λθηxλ−1
(

1− xλ
)η−1 [

1−
(

1− xλ
)η]θ−1

(2.4)

respectively, where 0 < x < 1, λ > 0, η > 0 and θ > 0.
Let G(x) be the CDF of a random variable X . The CDF of a generalized class of distributions is

given by

F (x;λ ,η ,θ) =
[
1−
(

1−G(x)λ
)η]θ

(2.5)

The corresponding PDF to (2.5) is

f (x;λ ,η ,θ) = λθηg(x)G(x)λ−1
(

1−G(x)λ
)η−1 [

1−
(

1−G(x)λ
)η]θ−1

(2.6)

[7] have used the CDF of Dagum distribution in (2.6) to propose the exponentiated
Kumaraswamy-Dagum distribution. The generalization (2.6) can be used to propose other distri-
butions based on the exponentiated Kumaraswamy distribution.

Replacing (1.1) in (2.5) we obtain a new distribution, called exponentiated Kumaraswamy
inverse Weibull (EKIW), with CDF given by

F (x;α,β ,λ ,η ,θ) =
[

1−
(

1− exp
[
−λ
(α

x

)β
])η]θ

(2.7)

and PDF

f (x;α,β ,λ ,η ,θ) = βλθηαβ x−(β+1) exp
[
−λ
(α

x

)β
](

1− exp
[
−λ
(α

x

)β
])η−1

×
[

1−
(

1− exp
[
−λ
(α

x

)β
])η]θ−1

(2.8)

Figure 1 shows the different graphs of PDF of EKIW distribution for different values of the
parameters α, β , λ , η and θ .
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Fig. 1. The PDF of the EKIW distribution for different values of the parameters.

2.1. Sub-models

Sub-models of EKIW distribution for selected values of the parameters are presented in this sub-
section.

(1) When β = λ = η = θ = 1, the EKIW distribution is the inverse exponential distribution
introduced by [8], with the density given by

f (x;α) = αx−2 exp
[
−
(α

x

)]
; (2.9)

(2) If β = 2 and λ = η = θ = 1, the EKIW distribution is the inverse Rayleigh distribution
introduced by [14]. The PDF is given by

f (x;α) = 2α2x−3 exp
[
−
(α

x

)2
]

; (2.10)

(3) If λ = η = θ = 1, we have the inverse Weibull (IW) distribution with the PDF,

f (x;α,β ) = βαβ x−(β+1) exp
[
−
(α

x

)β
]

; (2.11)

(4) If η = θ = 1, we have the generalized inverse Weibull (GIW) introduced by [5]. The cor-
responding PDF is

f (x;α,β ,λ ) = βλαβ x−(β+1) exp
[
−λ
(α

x

)β
]

; (2.12)

(5) When λ = η = 1, the EKIW distribution is the GIW distribution with parameters α, β and
θ . The corresponding PDF is
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f (x;α,β ,θ) = βθαβ x−(β+1) exp
[
−θ
(α

x

)β
]

; (2.13)

(6) If η = 1, we have another GIW distribution with parameters α, β , λθ and PDF is given by

f (x;α,β ,λθ) = βλθαβ x−(β+1) exp
[
−λθ

(α
x

)β
]
. (2.14)

3. Properties of the EKIW model

3.1. Expansions for the cumulative and density functions

For any real non-integer θ > 0, we have the power series

(1−ω)θ−1 =
∞

∑
j=0

(−1) jΓ(θ)ω j

Γ(θ − j) j!
(3.1)

where |ω|< 1 and Γ(·) is the gamma function defined by

Γ(α) =

∞∫
0

tα−1 e−tdt (3.2)

Using the power series (3.1) in Equation (2.7), we can write

F (x;α,β ,λ ,η ,θ) = θ
∞

∑
j=0

(−1) jΓ(θ)
Γ(θ − j+1) j!

(
1− exp

[
−λ
(α

x

)β
]) jη

(3.3)

For θ integer, the index j in the previous sums stops at θ . Using again the power series in Equa-

tion (3.3), we can express (2.7) (for η > 0 real non-integer) as

F (x;α,β ,λ ,η ,θ) = θη
∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ( jη)

Γ(θ − j+1)Γ( jη − k+1)( j−1)!k!
exp
[
−λk

(α
x

)β
]

(3.4)

Now, using the power series (3.1) in the Equation (2.8), we obtain

f (x;α,β ,λ ,η ,θ) =
βλθηαβ

xβ+1

∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)]
Γ(θ − j)Γ [η( j+1)− k] j!k!

exp
[
−λ (k+1)

(α
x

)β
]
(3.5)
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3.2. Hazard and reverse hazard functions

For a continuous distribution with PDF f (x) and CDF F(x), the hazard function is defined as

h(x) = lim
∆x→0

P(X < x+∆x|X > x)
∆x

=
f (x)

1−F(x)
(3.6)

The hazard function is an important quantity characterizing life phenomena. For the EKIW
distribution, the hazard rate function is

h(x;α,β ,λ ,η ,θ) =
βλθηαβ x−(β+1) exp

[
−λ
(α

x

)β
](

1− exp
[
−λ
(α

x

)β
])η−1

1−
[

1−
(

1− exp
[
−λ
(α

x

)β
])η]θ

×
[

1−
(

1− exp
[
−λ
(α

x

)β
])η]θ−1

(3.7)

Figure 2 illustrates some of possible shapes of the hazard function of the EKIW distribution for
selected values of the parameters α, β , λ , η and θ .

Fig. 2. The hazard function of the EKIW distribution for different values of the parameters.

The reverse hazard function of the EKIW distribution is

h(x;α,β ,λ ,η ,θ) =
βλθηαβ x−(β+1) exp

[
−λ
(α

x

)β
](

1− exp
[
−λ
(α

x

)β
])η−1

[
1−
(

1− exp
[
−λ
(α

x

)β
])η]θ

×
[

1−
(

1− exp
[
−λ
(α

x

)β
])η]θ−1

(3.8)
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3.3. Moments

Many of the interesting characteristics and features of a distribution can be studied through its
moments (e.g. tendency, dispersion, skewness and kurtosis). Therefore, it is customary to derive the
moments when a new distribution is proposed.

Using the form in (3.5), we can write

E (Xn) =
∫ ∞

0
xn f (x;α,β ,λ ,η ,θ)dx

=
∫ ∞

0

βλθηαβ

xβ−n+1

∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)]
Γ(θ − j)Γ [η( j+1)− k] j!k!

exp
[
−λ (k+1)

(α
x

)β
]

dx

= βλθη
∞

∑
j=0

∞

∑
k=0

αβ (−1) j+kΓ(θ)Γ [η( j+1)]
Γ(θ − j)Γ [η( j+1)− k] j!k!

∫ ∞

0
x−(β−n+1) exp

[
−λ (k+1)

(α
x

)β
]

dx

Making the transformation t = λ (k+1)(α/x)β and using the definition of the gamma function
(3.2), the nth moment of EKIW distribution is given by

E (Xn) = λθηαn
∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)]Γ
(

1− n
β

)
[λ (k+1)]1−n/β Γ(θ − j)Γ [η( j+1)− k] j!k!

(3.9)

for n < β . In particular, the mean for the EKIW distribution is given by

µ = E (X) = λθηα
∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)]Γ
(

1− 1
β

)
[λ (k+1)]1−1/β Γ(θ − j)Γ [η( j+1)− k] j!k!

(3.10)

Table 1 contains the mean of the EKIW distribution for various values of parameters α, β , λ , η
and θ .

Table 1. Mean of the EKIW distribution for different values of the parameters.

α β λ η θ Mean
0.2 1.5 1.0 1.0 1.0 0.536
0.5 1.5 1.0 1.0 1.0 1.339
1.0 1.5 1.0 1.0 1.0 2.679
1.0 2.0 1.0 1.0 1.0 1.772
1.0 2.0 1.5 1.0 1.0 2.171
1.0 2.0 2.0 1.0 1.0 2.507
1.0 2.0 2.0 1.0 1.5 3.760
1.5 3.5 2.5 1.0 2.5 2.575
2.0 1.5 2.0 3.0 4.0 4.216
3.0 2.0 2.0 1.0 2.5 10.540
3.0 4.0 2.0 4.0 1.5 4.687
3.0 5.5 6.0 3.0 6.5 3.848
4.0 2.0 2.0 4.0 3.5 6.814
7.0 5.0 6.0 4.0 6.5 8.801
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3.4. Quantile function

The quantile function Q(p), 0 < p < 1, for the EKIW distribution is given by

Q(p) =
α{

− log
[
1−
(
1− p1/θ

)1/η
]1/λ

}1/β (3.11)

The median of the distribution is obtained by using p = 0.5 in (3.11). The random sample can also
be easily generated from (3.11) by using p as uniform random number.

3.5. Mean deviations

The amount of spread in a population is evidently measured to some extent by the totality of devi-
ations from the mean and median. These are known as the mean deviation about the mean and the
mean deviation about the median. Let X be a EKIW random variable with mean µ = E (X) and
median m.

The mean deviation from the mean can be defined as

δ1 (X) = E (|X −µ|)

=
∫ ∞

0
|x−µ| f (x;α,β ,λ ,η ,θ)dx

= 2µF (µ;α,β ,λ ,η ,θ)−2µ +2
∫ ∞

µ
x f (x;α,β ,λ ,η ,θ)dx

= 2µ

[
1−

(
1− exp

[
−λ
(

α
µ

)β
])η]θ

−2µ

+ 2λθηα
∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)] [λ (k+1)]−1+1/β

Γ(θ − j)Γ [η( j+1)− k] j!k!

× γ

(
1− 1

β
,
λ (k+1)αβ

µβ

)
(3.12)

where γ(·, ·) is the lower incomplete gamma function defined by

γ(α,x) =
x∫

0

tα−1 e−tdt (3.13)

The mean deviation from the median is, also, defined by

δ1 (X) = E (|X −m|)

=
∫ ∞

0
|x−m| f (x;α,β ,λ ,η ,θ)dx

= −µ +2
∫ ∞

m
x f (x;α,β ,λ ,η ,θ)dx

= −µ +2λθηα
∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)] [λ (k+1)]−1+1/β

Γ(θ − j)Γ [η( j+1)− k] j!k!

× γ

(
1− 1

β
,
λ (k+1)αβ

mβ

)
(3.14)
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3.6. Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications not only in economics to study income and
poverty, but also in other fields like reliability, demography, insurance and medicine. The Bonferroni
and Lorenz curves are defined by

B(p) =
1

pµ

∫ q

0
x f (x)dx (3.15)

and

L(p) =
1
µ

∫ q

0
x f (x)dx (3.16)

respectively, where µ = E (X) and q = F−1 (p). In the case of EKIW distribution, we obtain

B(p) =
λθηα

pµ

∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)] [λ ( j+1)]−1+1/β

Γ(θ − j)Γ [η( j+1)− k] j!k!
Γ

[
1− 1

β
,
λ ( j+1)αβ

qβ

]
(3.17)

and

L(p) =
λθηα

µ

∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)] [λ ( j+1)]−1+1/β

Γ(θ − j)Γ [η( j+1)− k] j!k!
Γ

[
1− 1

β
,
λ ( j+1)αβ

qβ

]
(3.18)

where Γ(·, ·) is the upper incomplete gamma function defined by

Γ(α,x) =
∞∫

x

tα−1 e−tdt (3.19)

3.7. Entropy

An entropy of a random variable X is a measure of variation of the uncertainty. It is an important
concept in many fields of science, especially theory of communication, physics and probability. A
popular entropy measure is Rényi entropy. If X has the PDF f (·) then Rényi entropy is defined by

HR (ν) =
1

1−ν
log
[∫

f ν (x)dx
]

(3.20)

where ν > 0 and ν ̸= 1. Using (3.20), Rényi entropy of EKIW distribution is given by

HR (ν) =
ν

1−ν
(logβ + logλ + logθ + logη +β logα)+

1−ν (β +1)
1−ν

logα − logβ

+
1

1−ν
log

∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ [ν (θ −1)+1]Γ [η j+ν (η −1)+1] [λ (ν + k)][1−ν(β+1)]/β

Γ [ν (θ −1)+1− j]Γ [ jη +ν (η −1)+1− k] j!k!

×Γ
[

ν (β +1)−1
β

]
(3.21)
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3.8. Order statistics

Order statistics are among the most fundamental tools in non-parametric statistics and inference.
They enter in the problems of estimation and hypothesis tests in a variety of ways. Therefore, we
now discuss some properties of the order statistics for the EKIW distribution. Suppose X1, X2, . . . ,Xn

is a random sample from EKIW distribution. Let X1:n < X2:n < .. . < Xn:n denote the corresponding
order statistics. From [1], the PDF and CDF of the rth order statistic, say Y = Xr:n, are given by

fY (y) =
n!

(r−1)!(n− r)!
Fr−1(y) [1−F(y)]n−r f (y)

=
n!

(r−1)!(n− r)!

n−r

∑
l=0

(
n− r

l

)
(−1)l F l+r−1(y) f (y) (3.22)

and

FY (y) =
n

∑
j=r

(
n
j

)
F j(y) [1−F(y)]n− j

=
n

∑
j=r

n− j

∑
l=0

(
n
j

)(
n− j

l

)
(−1)l F j+l(y) (3.23)

where f (·) and F(·) are the PDF and CDF of the EKIW distribution, respectively. It follows from
Equations (2.7) and (2.8) that

fY (y) =
βλθηαβ y−(β+1)n!
(r−1)!(n− r)!

exp

[
−λ
(

α
y

)β
](

1− exp

[
−λ
(

α
y

)β
])η−1

×
n−r

∑
l=0

(
n− r

l

)
(−1)l

[
1−

(
1− exp

[
−λ
(

α
y

)β
])η]θ(l+r)−1

(3.24)

and

FY (y) =
n

∑
j=r

n− j

∑
l=0

(
n
j

)(
n− j

l

)
(−1)l

[
1−

(
1− exp

[
−λ
(

α
y

)β
])η]θ( j+l)

(3.25)

4. Characterizations of model

Characterizations of distributions are important to many researchers in the applied fields. An inves-
tigator will be vitally interested to know if their model fits the requirements of a particular distri-
bution. To this end, one will depend on the characterizations of this distribution which provide
conditions under which the underlying distribution is indeed that particular distribution. Various
characterizations of distributions have been established in many different directions. In this section,
several characterizations of (EKIW) distribution are presented. These characterizations are based
on: (i) a simple relationship between two truncated moments; (ii) a single function of the random
variable.

4.1. Characterizations based on truncated moments

In this subsection we present characterizations of (EKIW) distribution in terms of a simple relation-
ship between two truncated moments. Our characterization results presented here will employ an
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interesting result due to [3] (Theorem G, below). The advantage of the characterizations given here
is that, cd f F need not have a closed form and are given in terms of an integral whose integrand
depends on the solution of a first order differential equation, which can serve as a bridge between
probability and differential equation.

Theorem G. Let (Ω,F ,P) be a given probability space and let H = [a,b] be an interval

for some a < b (a =−∞ , b = ∞ might as well be allowed) . Let X : Ω → H be a continuous
random variable with the distribution function F and let g and h be two real functions defined
on H such that

E [g(X) | X ≥ x] = E [h(X) | X ≥ x] ζ (x) , x ∈ H ,

is defined with some real function ζ . Assume that g , h ∈ C1 (H) , ζ ∈ C2 (H) and F is twice
continuously differentiable and strictly monotone function on the set H . Finally, assume that the
equation hζ = g has no real solution in the interior of H . Then F is uniquely determined by the
functions g , h and ζ , particularly

F (x) =
∫ x

a
C
∣∣∣∣ ζ ′ (u)
ζ (u)h(u)−g(u)

∣∣∣∣exp(−s(u)) du ,

where the function s is a solution of the differential equation s′ = ζ ′ h
ζ h − g and C is a constant,

chosen to make
∫

H dF = 1 .

Clearly, Theorem G can be stated in terms of two functions g and ζ by taking h(x)≡ 1, which
will reduce the condition given in Theorem G to E [g(X) | X ≥ x] = ζ (x) . However, adding an
extra function will give a lot more flexibility, as far as its application is concerned.

Proposition 4.1. Let X : Ω → (0,∞) be a continuous random variable and let h(x) =

[
1−
(

1− e−λ( α
x )

β
)η]1−θ

and g(x) = h(x)
(

1− e−λ( α
x )

β
)

for x ∈ (0,∞) . The pd f of X

is (2.8) if and only if the function ζ defined in Theorem G has the form

ζ (x) =
a

a+1

(
1− e−λ( α

x )
β
)
, x > 0.

Proof. Let X have density (2.8) , then
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(1−F (x)) E [h(X) | X ≥ x] = b
(

1− e−λ( α
x )

β
)η

, x > 0 ,

and

(1−F (x)) E [g(X) | X ≥ x] =
ab

a+1

(
1− e−λ( α

x )
β
)η+1

, x > 0 ,

and finally

ζ (x)h(x)−g(x) =− 1
a+1

h(x)
(

1− e−λ( α
x )

β
)
< 0 f or x > 0 .

Conversely, if ζ is given as above, then

s′ (x) =
ζ ′ (x) h(x)

ζ (x) h(x)−g(x)
=

βληαβ x−(β+1)e−λ( α
x )

β

1− e−λ( α
x )

β , x > 0 ,

and hence

s(x) =− ln
{(

1− e−λ( α
x )

β
)η}

, x > 0.

Now, in view of Theorem G, X has density (2.8) .

Corollary 4.1. Let X : Ω → (0,∞) be a continuous random variable and let h(x) be as in

Proposition 1. The pd f of X is (2.8) if and only if there exist functions g and ζ defined in
Theorem G satisfying the differential equation

ζ ′ (x)h(x)
ζ (x)h(x)−g(x)

=
βληαβ x−(β+1)e−λ( α

x )
β

1− e−λ( α
x )

β , x > 0.

Remarks 4.1. (a) The general solution of the differential equation in Corollary 4.1 is

ζ (x)=
(

1− e−λ( α
x )

β
)−η

[
−
∫

βληαβ x−(β+1)e−λ( α
x )

β
(

1− e−λ( α
x )

β
)η−1

(h(x))−1 g(x)dx+D

]
,

for x > 0 , where D is a constant. One set of appropriate functions is given in Proposition A.1
with D = 0.

(b) Clearly there are other triplets of functions (h,g,ζ ) satisfying the conditions of Theorem
G. We presented one such triplet in Proposition 4.1.
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4.2. Characterizations based on single function of the random variable

In this subsection we employ a single function ψ of X and state characterization results in terms of
ψ (X) . The following proposition has already appeared a Technical Report [6], so we will just state
it here for the sake of completeness.

Proposition 4.2 Let X : Ω → (a,b) be a continuous random variable with cd f F . Let ψ (x)

be a differentiable function on (a,b) with limx→b ψ (x) = 1. Then for δ ̸= 1 ,

E [ψ (X) |X < x] = δψ1 (x) , x ∈ (a,b)

if and only if

ψ (x) = (F (x))
1
δ −1 , x ∈ (a,b) .

Remark 4.2. Taking, e.g., ψ (x) =
{[

1−
(

1− e−λ( α
x )

β
)η]} bδ

1−δ

, Proposition 4.2 gives a charac-

terization of (2.8) .

5. Estimation of model parameters

In this section, we consider estimation of the five parameters by the methods of moments and
maximum likelihood. Suppose x1, . . . ,xn is a random sample of size n from the EKIW distribution
given by (2.7). Under the method of moments, equating the theoretical moments E (X r) with the
corresponding sample moments,

Mr =
1
n

n

∑
l=1

xr
l , r = 1, . . . ,5. (5.1)

respectively, one obtains the system of equations

Mr = λθηαr
∞

∑
j=0

∞

∑
k=0

(−1) j+kΓ(θ)Γ [η( j+1)]Γ
(

1− r
β

)
[λ (k+1)]1−r/β Γ(θ − j)Γ [η( j+1)− k] j!k!

(5.2)

which can be solved simultaneously to give estimates for α, β , λ , η and θ .
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Now consider estimation by the method of maximum likelihood. The log-likelihood for a ran-
dom sample x1, . . . ,xn from the EKIW distribution given by (2.7) is

logL(α,β ,λ ,η ,θ) = n logβ +n logλ +n logθ +n logη +nβ logα − (β +1)
n

∑
i=1

logxi

− λ
n

∑
i=1

(
α
xi

)β
+(η −1)

n

∑
i=1

log

(
1− exp

[
−λ
(

α
xi

)β
])

+ (θ −1)
n

∑
i=1

log

[
1−

(
1− exp

[
−λ
(

α
xi

)β
])η]

(5.3)

Differentiating the log-likelihood with respect α, β , λ , η and θ , respectively, and setting the
result equal to zero, we have

∂ logL
∂α

=
βλη (1−θ)

α

n

∑
i=1

(
α
xi

)β
exp

[
−λ
(

α
xi

)β
](

1− exp

[
−λ
(

α
xi

)β
])η−1

1−

(
1− exp

[
−λ
(

α
xi

)β
])η

+
nβ
α

− λ
α

n

∑
i=1

(
α
xi

)β
−βλ (η −1)αβ−1

n

∑
i=1

x−β
i

1− exp

[
λ
(

α
xi

)β
] = 0 (5.4)

∂ logL
∂β

=
n
β
+n logα −

n

∑
i=1

logxi +λ
n

∑
i=1

(
α
xi

)β
log
(

α
xi

)
+(1−η)

n

∑
i=1

λ
(

α
xi

)β
log
(

α
xi

)
1− exp

[
λ
(

α
xi

)β
]

−λη (θ −1)
n

∑
i=1

(
α
xi

)β
log
(

α
xi

)
exp

[
−λ
(

α
xi

)β
](

1− exp

[
−λ
(

α
xi

)β
])η−1

1−

(
1− exp

[
−λ
(

α
xi

)β
])η = 0 (5.5)

∂ logL
∂λ

= η (1−θ)
n

∑
i=1

(
α
xi

)β
exp

[
−λ
(

α
xi

)β
](

1− exp

[
−λ
(

α
xi

)β
])η−1

1−

(
1− exp

[
−λ
(

α
xi

)β
])η

+
n
λ
+

n

∑
i=1

(
α
xi

)β
− (η −1)αβ

n

∑
i=1

x−β
i

1− exp

[
λ
(

α
xi

)β
] = 0 (5.6)
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∂ logL
∂η

=
n
η
+(θ −1)

n

∑
i=1

log

(
1− exp

[
−λ
(

α
xi

)β
])

1−

(
1− exp

[
−λ
(

α
xi

)β
])−η

+
n

∑
i=1

log

(
1− exp

[
−λ
(

α
xi

)β
])

= 0 (5.7)

∂ logL
∂θ

=
n
θ
+

n

∑
i=1

log

[
1−

(
1− exp

[
−λ
(

α
xi

)β
])η]

= 0 (5.8)

The maximum likelihood estimates α̂, β̂ , λ̂ , η̂ and θ̂ of the unknown parameters α, β , λ , η and
θ , respectively, are obtained by solving Equations 5.4−5.8.

6. Application

The data set given in Table 2 represents the relief times of twenty patients receiving an analgesic.
This data set was taken from [4]. We would like to emphasize that the aim here is not to provide a
complete statistical modeling or inferences for the data set involved.

Table 2. Relief times of twenty patients.

1.1 1.4 1.3 1.7 1.9 1.8 1.6 2.2 1.7 2.7
4.1 1.8 1.5 1.2 1.4 3.0 1.7 2.3 1.6 2.0

We use the lifetime data set given by Table 2 to compare the fit of the EKIW distribution with
four distributions: gamma, IW, Lindley and Weibull. The PDF of gamma, IW, Lindley and Weibull
distributions are

(1) Gamma:

f (x) =
β αxα−1

Γ(α)
exp(−βx) (6.1)

(2) IW:

f (x) = βαβ x−(β+1) exp
[
−
(α

x

)β
]

(6.2)

(3) Lindley:

f (x) =
α2

α +1
(1+ x)exp(−αx) (6.3)

(4) Weibull:

f (x) = αβ (βx)α−1 exp
[
−(βx)α] (6.4)
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The maximum likelihood estimates and the Akaike Information Criterion (AIC) values for the
fitted distributions are reported in Table 3. The results show that the EKIW distribution provides a
significantly better fit than the other four models.

Table 3. The maximum likelihood estimates and AIC of the models based on data set.

Distribution Maximum Likelihood Estimates AIC

EKIW α = 4.324, β = 2.319, λ = 0.567, η = 3.166, θ = 0.228 32.509
Gamma α = 9.670, β = 5.089 39.637
IW α = 1.563, β = 4.017 34.817
Lindley α = 0.816 62.499
Weibull α = 2.130, β = 2.787 45.173

Plots of the estimated PDF of the EKIW, gamma, IW, Lindley and Weibull models fitted to these
data set are given in Figure 3. The figure indicate that the EKIW distribution is superior to the other
distributions in terms of model fitting.

Fig. 3. Histogram and estimated densities.

7. Conclusion

We proposed a new distribution, named the exponentiated Kumaraswamy inverse Weibull distribu-
tion which extends the inverse Weibull distribution. Several properties of the new distribution were
investigated, including the moments, hazard function, mean deviations and Rényi entropy. The esti-
mation of parameters by the method of moments and the maximum likelihood have been discussed.
An application of the exponentiated Kumaraswamy inverse Weibull distribution to real data show
that the new distribution can be used quite effectively to provide better fits than the gamma, inverse
Weibull, Lindley and Weibull distributions.
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