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In this paper we develop a new family of Weibull-gamma model which is obtained by compounding a q-Weibull
density with a two parameter gamma density. This class can be considered as a natural extension of the Weibull-
gamma model which accommodates various other useful statistical models. Properties of the proposed model
are discussed, including the derivation of its density function. The method of moments is used for estimating
the model parameters. The practical importance of the new model is illustrated using cancer survival data.
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1. Introduction

Nowadays researchers have shown a growing interest in mathematical modeling of the process of
cancer progression at different levels. Analysis of cancer survival data and related outcomes are
necessary to asses cancer treatment programs. Chen and Beck (2008), developed a superstatistical
model for the progression of metastasis and the corresponding survival statistics of cancer patients.
The importance of superstatistics was illustrated over the last few years, both in applied and the-
oretical aspects. Superstatistics is a branch of statistical physics devoted originally to the study of
non-equilibrium complex systems. The concept of superstatistics can be effectively described by a
superposition of several statistics, which was first discussed by Beck and Cohen (2003). The station-
ary distribution of superstatistical systems is obtained by averaging over the fluctuating parameter
β . Then the system distribution can be written as

p(x) =
∫

∞

0
p1(x|β )p2(β )dβ . (1.1)

Of course this is similar to compound or mixture models in Statistics and for details we can refer
to Johnson et al. (1992,1994). A Bayesian method to analyze cancer survival data using Weibull
model was discussed by Abrams and Ashby (1996). Molenberghs and Verbeke (2011) developed a
Weibull-gamma density for modeling the survival data from cancer patients.
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The basic characteristics of complex systems include long-range correlations, multifractality
and non-Gaussian distributions with asymptotic power law behavior. Such systems are not well
described by ideas based on the usual statistical mechanics. The q-type distributions are effectively
used for describing the behavior of complex systems. Recently various authors have introduced
several q-type distributions such as q-exponential, q-Weibull, q-gamma etc. Such types of distribu-
tions have lots of applications in various contexts such as empirical study of stock markets (Politi
and Scalas (2008)), train delays (Briggs and Beck (2007)), DNA sequences (Keylock (2005)) etc.
A brief review of q-distributions in complex systems is give in Picoli et al. (2009). The aim of
the present paper is to extend the Weibull-gamma model in the light of q-Weibull distribution. The
connection between q-type distributions including q-Weibull model and various entropy measure in
statistical literature was studied in detail by Mathai and Haubold (2007).

The organization of the paper is as follows: In section 2, we present the q-Weibull distribution
and some of its properties. The new generalization of Weibull-gamma model is derived and its struc-
tural properties are discussed in section 3. The method of moments for estimating the parameters of
the proposed model is studied in section 4. Section 5 contains the fitting of the new model to Lung
cancer survival data.

2. q-Weibull density

Before going to the discussion of the q-Weibull density, we give a connection of this density to
Tsallis statistics and pathway idea of Mathai (2005). The connection is based on the fact that the
q-exponential can be viewed as Tsallis statistics. The q-exponential density is obtained when the
Tsallis entropy

Tk,q =

k

∑
i=1

pq
i −1

1−q
,q 6= 1, (2.1)

and for the continuous case

Tk,q =

∫
∞

−∞
[ f (x)]qdx−1

1−q
,q 6= 1, (2.2)

is maximized subject to the conditions that f is a density or probability function and that the first
moment is fixed. Then going through an escort density we end up with Tsallis statistics. Here pi

is the probability of the ith state and q is a real parameter. The pathway model and from there
the q-Weibull, are obtained by optimizing Mathai’s entropy, see Mathai and Haubold (2007). The
importance of q-Weibull density in reliability theory is shown in detail in Assis et al. (2013). The
density function of the q-Weibull model is

f1(x|θ) =

{
βθ(2−q)xβ−1[1+θ(q−1)xβ ]−

1
q−1 , x≥ 0,q < 2,β > 0,

0, otherwise.
(2.3)

For q > 1 we have the form in (2.3). The model in (2.3) consists of three different functional forms.

For q < 1, we can write
[
1+θ(q−1)xβ

]− 1
q−1 =

[
1−θ(1−q)xβ

] 1
1−q . The right side remains pos-

itive in the finite range [1−θ(1−q)xβ ] > 0 or 0 < x < 1

(θ(1−q))
1
β

. Then for q < 1 , f1(x|θ) can be
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written as

f2(x|θ) =

βθ(2−q)xβ−1[1−θ(1−q)xβ ]
1

1−q 0 < x < 1

(θ(1−q))
1
β

,β > 0

0, otherwise.
(2.4)

When q→ 1, f1(x|θ) and f2(x|θ) will go to f3(x|θ), where

f3(x|θ) =

{
βθxβ−1e−θxβ

, θ ,β > 0,x≥ 0,
0, otherwise,

(2.5)

which is the Weibull density. When q → 1, (2.3) becomes Weibull density; when β = 1, (2.3)
becomes q-exponential model and when q→ 1, (2.3) becomes (2.5) with β = 1, which is the expo-
nential density. The achievement of the q-type distributions is that this new extension of the distri-
bution has its ability to exhibit heavy-tails when compared to the classical distributions. Nowadays
q-Weibull has been applied to many practical problems in physics, for example in the study of fractal
kinetics (Brouers and Costa (2006)), dielectric breakdown in oxides (Costa et al. (2006)), relaxation
in heterogeneous system (Brouers et al. (2005)), cyclone victims (Picoli et al. (2003)) etc.

3. Generalized Weibull-gamma model

Suppose x is a random variable having Weibull density given in (2.5) with parameters θ and β

where θ follows a gamma density with parameters α and δ , having the density function as

f4(θ) =
1

δ αΓ(α)
θ

α−1e−
θ

δ ,θ > 0,δ > 0,α > 0 (3.1)

and f4(θ) = 0 elsewhere. Then the density of x is given by

h(x) =
∫

∞

0
f3(x|θ) f4(θ)dθ

=
β

Γ(α)δ α
xβ−1

∫
∞

0
θ

αe−θxβ− θ

δ dθ (3.2)

= βδα
xβ−1

(1+δxβ )α+1 ,x≥ 0,δ > 0,β > 0,α > 0, (3.3)

and h(x) = 0 elsewhere. The density in (3.3) is the same as the generalized Burr density, for details
of Burr type model see Rodrigues (1977). The Burr type distributions have been used in a variety
of statistical modeling, which includes crop prices, operational risk, market price distribution etc.
Also note that by substituting β = 1, (3.3) is reduced to the Lomax density (Lomax (1954)). By
suitable transformations, the density function (3.3) can be reduced to some special cases of the beta
and F distributions. Tadikamalla (1980) discussed the relationship between the Burr distributions
and the various other distributions namely, the Lomax and the Kappa family of distributions. For
α = 1,δ = γ

η
, the density function (3.3) reduces to

h(x) = βγη
xβ−1

(η + γxβ )2 ,x≥ 0,β > 0,γ > 0,η > 0, (3.4)

and h(x) = 0 elsewhere. This is the log-logistic density given in Bennet (1983) and Collett (2003).
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3.1. Pathway extended gamma model

Observe that the integrand in (3.2) consists of two factors e−θxβ

and θ αe−
θ

δ . The general forms of
these can be obtained as the limiting forms of binomial functions. That is

lim
p→1

θ
r[1+ xδ

θ
ε(p−1)]−

1
p−1 = θ

r e−xδ θ ε

, (3.5)

and

lim
q→1

θ
α [1+(q−1)

θ ε

δ
]−

1
q−1 = θ

α e−
θε

δ . (3.6)

Thus, the pathway extension of θ re−xδ θ ε

and θ αe−
θε

δ are θ r[1 + (p− 1)xδ θ ε ]−
1

p−1 and θ α [1 +

(q−1)θ ε

δ
]−

1
q−1 respectively. Hence, we may replace the gamma density forms by the corresponding

binomial factors. The analysis can be done exactly as described below. In order to avoid complicated
expressions we will consider only very special cases of (3.5) and (3.6). Note that if r = ε−1 in (3.5)
and α = ε−1 in (3.6) then the analysis is simplified and we will end up with extended Weibull type
distributions. This case will be considered in detail below.
We extend the density in (3.3) by using q-Weibull density. Then the density function of x is given
by h1(x) which has the following form

h1(x) =
β (2−q)
δ αΓ(α)

xβ−1
∫

∞

0
θ

α [1+(q−1)θxβ ]
−1

q−1 e−
θ

δ dθ (3.7)

for 1 < q < 2,α,β ,δ > 0,x ≥ 0. The integral part in (3.7) can be evaluated by using the Mellin
convolution property, by taking it as a statistical distribution problem. Let x1 and x2 be indepen-
dently distributed real scalar positive random variables. Let their densities be g1(x1) and g2(x2)

respectively. Consider the transformation u = x1
x2

and v = x2. Then the density function of u is given
by

g(u) =
∫

v
vg1(uv)g2(v)dv. (3.8)

Let

g1(x1) = c1[1+(q−1)x1]
− 1

q−1 ,x1 ≥ 0 and g2(x2) = c2xα−1
2 e−bx2 ,x2 ≥ 0,b > 0,

so that g1 and g2 can create statistical densities for appropriate values of the normalizing constants
c1 and c2. Note that we could have g1 and g2 in terms of the extended form in (3.5) and (3.6). The
procedure described below would have remained the same. Then

c1c2

∫
∞

θ=0
θ [1+(q−1)θxβ ]−

1
q−1 θ

α−1 e−
θ

δ dθ =
∫

∞

θ=0
θg1(xβ

θ)g2(θ)dθ ,u = xβ . (3.9)

Hence the Mellin transform of the left side is the product of the Mellin transforms of the right side.
Writing in terms of statistical expectations,

E(x1
s−1) = c1

1
(q−1)s

Γ(s)Γ( 1
q−1 − s)

Γ( 1
q−1)

, (3.10)
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for ℜ(s)> 0,ℜ( 1
q−1 − s)> 0,q > 1, where ℜ(.) is the real part of (.), and

E(x2
1−s) = c2

1
(b)α−s+1 Γ(α− s+1),ℜ(α− s+1)> 0. (3.11)

From (3.10) and (3.11),

E(us−1) = c1c2
1

(q−1)sb(α−s+1)

Γ(s)Γ( 1
q−1 − s)Γ(α− s+1)

Γ( 1
q−1)

(3.12)

for b > 0,q > 1,ℜ(s)> 0,ℜ( 1
q−1 − s)> 0 and ℜ(α− s+1)> 0. Then the integral is available by

taking the inverse Mellin transform and it is the following:

c1c2

∫
∞

θ=0
θ [1+(q−1)θxβ ]−

1
q−1 θ

α−1 e−
θ

δ dθ

= c1c2
δ α+1

Γ( 1
q−1)

1
2πi

∫
L

Γ(s)Γ(
1

q−1
− s)Γ(α− s+1)

(
(q−1)xβ

δ

)−s
ds

= c1c2
δ α+1

Γ( 1
q−1)

G1,2
2,1

[
(q−1)xβ

δ

∣∣∣∣1− 1
q−1 ,−α

0

]
, (3.13)

for 1< q< 2,x> 0, and δ > 0, where G is the G-function. For the definition, theory and applications
of G-function, see Mathai (1993). Observe that c2 from (3.11) is Γ(α)

α
and c1 from (3.10) is available

by putting s = 1 and using the fact that E(1) = 1. Then substituting c1 and c2 in (3.12) and inverting
(3.12) we have,

h1(x) =
β (2−q)δ

Γ(α)Γ( 1
q−1)

xβ−1G1,2
2,1

[
(q−1)xβ

δ

∣∣∣∣1− 1
q−1 ,−α

0

]
, (3.14)

for x > 0,δ > 0,1 < q < 2,β > 0, and h1(x) = 0 elsewhere.
Now for q < 1, the density function of x has the following form:

h2(x) =
β (2−q)
δ αΓ(α)

xβ−1
∫ 1

(θ(1−q))
1
β

0
θ

α [1−θ(1−q)xβ ]
1

1−q e−
θ

δ dθ . (3.15)

For convenience of integration, let us assume that d = 1

(θ(1−q))
1
β

. For q < 1, let

I1 =
∫ d

0
θ

α [1−θ(1−q)xβ ]
1

1−q e−
θ

δ dθ , (3.16)

where d = 1

(θ(1−q))
1
β

and β > 0. Then I1 is the product of the two integrable functions. Hence we

can apply Mellin convolution property for finding the value of the integral. Let

g3(x1) = c3[1− (1−q)x1]
1

1−q , [1− (1−q)x1]≥ 0 and g4(x2) = c4x2
α−1e−bx2 ,x2 ≥ 0,b > 0,

where c3 and c4 are normalizing constants. Then proceeding as in the case for q > 1, we have

h2(x) =
δβ (2−q)Γ( 1

1−q +1)

Γ(α)
xβ−1G1,1

2,1

[
(1−q)δxβ

∣∣∣∣−α,1+ 1
1−q

0

]
, (3.17)
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for x > 0,δ > 0,β > 0,α > 0,q < 1 and h2(x) = 0 elsewhere.

Theorem 3.1. When the conditional density of x|θ is of the form f1(x|θ) in (2.3), and the marginal
density of θ is of the form of f4(θ) in (3.1), then for q > 1, the unconditional density of x denoted
by h1(x), is given by

h1(x) =
β (2−q)δ

Γ(α)Γ( 1
q−1)

xβ−1G1,2
2,1

[
(q−1)xβ

δ

∣∣∣∣1− 1
q−1 ,−α

0

]
, (3.18)

for x > 0,δ > 0,1 < q < 2,β > 0, and h1(x) = 0 elsewhere.
For q < 1

h2(x) =
δβ (2−q)Γ( 1

1−q +1)

Γ(α)
xβ−1G1,1

2,1

[
(1−q)δxβ

∣∣∣∣−α,1+ 1
1−q

0

]
, (3.19)

for x > 0,δ > 0,β > 0,α > 0 and h2(x) = 0 elsewhere. As q→ 1, h1(x) and h2(x) tend to h(x)
where h(x) is the usual Weibull-gamma model with the parameters β ,δ and α , and it is given by

h(x) = βδα
xβ−1

(1+δxβ )α+1 , (3.20)

for x≥ 0,β ,δ ,α > 0 and h(x) = 0 elsewhere.

Special Cases

Many compound distributions are special cases of the extended Weibull-gamma model introduced
in section 2. Some of them are given below.

(1) Rayleigh-gamma density is obtained from (3.18), by letting q→ 1 and β = 2.
(2) The extended Rayleigh-gamma model is obtained from (3.18), by letting β = 2.
(3) The exponential-gamma density is obtained from (3.18), by letting q→ 1 and β = 1.
(4) The extended exponential-gamma density is obtained from (3.18), by letting β = 1.

The behavior of the density functions is given in the following figures for selected values of the
parameters.

Figure 1 (a) Figure 1 (b)

Density functions of extended Weibull-gamma distribution.
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Figure 2

Comparison between Weibull-gamma (q→ 1) and for different values of q.

The effect of the parameters can be easily seen from these graphs. Figure 1(a) and 1(b) illustrate
the extended Weibull-gamma model when the parameters α,β ,δ are fixed and q is changing. From
these figures, we can say that the density function has thicker tail for q < 1 than q > 1. Figure 2
shows a comparison between Weibull-gamma model (q→ 1) and extended Weibull-gamma model
for different values of q.

4. Properties

This section discusses the statistical properties for the extended Weibull-gamma distribution.

The hth moment of a random variable x with density function given by (3.18). Then the hth

moment of x is

E(xh) =
∫

∞

0
xhh1(x)dx (4.1)

=
(2−q)δΓ( h

β
+1)Γ( 1

q−1 −
h
β
−1)Γ(α− h

β
)

Γ(α)Γ( 1
q−1)((q−1)δ )

h
β
+1

, (4.2)

for α > 0,1 < q < 2,ℜ( h
β
)> 0,ℜ(α− h

β
)> 0, and ℜ( 1

q−1 −
h
β
−1)> 0.

The mean value is obtained when h = 1. That is

E(x) =
(2−q)δΓ( 1

β
+1)Γ( 1

q−1 −
1
β
−1)Γ(α− 1

β
)

Γ(α)Γ( 1
q−1)(δ (q−1))

1
β
+1

(4.3)

for α > 0,1 < q < 2,α− 1
β
> 0, 1

q−1 −
1
β
−1 > 0,β ,δ > 0.

E(x2) is obtained when h = 2 and the variance of x is Var(x) = E(x− (E(x))2) is

Var(x) =
(2−q)δ

Γ(α)Γ( 1
q−1)(δ (q−1))

2
β
+1
×
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Γ(

2
β
+1)Γ(

1
q−1

− 2
β
−1)Γ(α− 2

β
)−

(2−q)(Γ( 1
β
+1))2(Γ( 1

q−1 −
1
β
−1))2(Γ(α− 1

β
))2

Γ(α)Γ( 1
q−1)(q−1)

]
,

(4.4)
for α− 1

β
> 0,1 < q < 2,α− 2

β
> 0, 1

q−1 −
1
β
−1 > 0, 1

q−1 −
2
β
−1 > 0,α > 0,β ,δ > 0.

For q < 1 the hth moment of x becomes

E(xh) =
(2−q)δΓ( 1

1−q +1)Γ( h
β
+1)Γ(α− h

β
)

Γ(α)((1−q)δ )
h
β
+1

Γ(2+ 1
1−q +

h
β
)

, (4.5)

for α > 0,ℜ(α− h
β
)> 0,ℜ( 1

1−q +
h
β
)> 0,δ > 0,β > 0.

The corresponding mean and variance are obtained similarly for the above case.

Laplace Transform

The Laplace transform Lh1(t) of the density function h1(x) is given by

Lh1(t) =
∫

∞

0
e−txh1(x)dx.

Using the equation (2.19) in Mathai et al. (2010), we get

Lh1(t) =
βδ (2−q)

Γ(α)Γ( 1
q−1)t

β
H3,1

1,3

[
tβ

(q−1)δ

∣∣∣∣(1,1)
(β ,β ),( 1

q−1 ,1),(1+α,1)

]
, (4.6)

for t > 0,β > 0,δ > 0,α > 0,1 < q < 2, where H(.) is the H-function, for details see Mathai et al.
(2010). For q < 1, the Laplace transform is given by

Lh2(t) =
βδ (2−q)Γ( 1

1−q +1)

Γ(α)tβ
H2,1

1,3

[
tβ

(1−q)δ

∣∣∣∣(1,1)
(β ,β ),(− 1

1−q ,1),(1+α,1)

]
, (4.7)

for t > 0,β > 0,δ > 0,α > 0.

Distribution Function

The distribution function H1(x) of the extended Weibull-gamma random variable x is given by the
following:
For q > 1,

H1(x) = 1− (2−q)
Γ(α)Γ( 1

q−1)(q−1)
H2,2

3,2

[
(δ (q−1))

1
β x
∣∣∣∣(2− 1

q−1 ,
1
β
),(1−α, 1

β
),(1,1)

(0,1),(1, 1
β
)

]
, (4.8)

for x > 0,α > 0,β > 0,1 < q < 2.
When q < 1, the distribution function H2(x) is given by

H2(x) = 1−
(2−q)Γ( 1

1−q +1)

Γ(α)(1−q)
H2,1

3,2

[
(δ (1−q))

1
β x
∣∣∣∣(1−α, 1

β
),(2+ 1

1−q ,
1
β
),(1,1)

(0,1),(1, 1
β
)

]
, (4.9)

for x > 0,α > 0,β > 0.
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The behavior of the distribution functions H1(x) and H2(x) for the different values of the parameters
can be seen from the following graphs.

Figure 4 Figure 5

Figure 4. The graph of H1(x) for various values of the parameters α,β ,δ and q.
Figure 5. The graph of H2(x) for various values of the parameters α,β ,δ and q.

Reliability and Hazard Function

Here we discuss the behavior of hazard rate function on the family of extended Weibull-gamma
model. The reliability function R(t) = 1−F(t) of the extended Weibull-Gamma model is given by

R1(t) =
(2−q)

Γ(α)Γ( 1
q−1)(q−1)

H2,2
3,2

[
(δ (q−1))

1
β t
∣∣∣∣(1−α, 1

β
),(2− 1

q−1 ,
1
β
),(1,1)

(0,1),(1, 1
β
)

]
, (4.10)

for t > 0,α > 0,β > 0,1 < q < 2.
The hazard rate function λ1(t) =

f (t)
R(t) of the extended Weibull-gamma random variable is

λ1(t) = (δ (q−1))
1
β

tβ−1H1,2
2,1

[
(δ (q−1))

1
β t
∣∣∣∣(1−α− 1

β
, 1

β
),(2− 1

q−1−
1
β
, 1

β
)

(1− 1
β
, 1

β
)

]

H2,2
3,2

[
(δ (q−1))

1
β t
∣∣∣∣(1−α, 1

β
),(2− 1

q−1 ,
1
β
),(1,1)

(0,1),(1, 1
β
)

] ,

for t > 0,δ > 0. The expression of λ1(t) is complicated, but for particular values of the parameters
α,β ,δ and q, the hazard rate function can be the ratio of Meijer G-function. Meijer G-function can
be evaluated using the softwares Maple 14 or Mathematica.
The graphs of λ1(t) for various values of the parameters are given in the following figures.
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Figure 6 Figure 7

Figure 6. The graph of λ1(t) for various values of the parameters α,β ,δ and q.
Figure 7. The graph of λ1(x) for various values of the parameters α,β ,δ and q.
For 1< q< 2,β = 1, the failure rate of extended Weibull-gamma model is monotonically decreasing
function and when 1 < q < 2,β = 2, the hazard rate function is unimodal type.

For q < 1, the reliability and hazard rate functions are given by

R2(t) =
(2−q)Γ( 1

1−q +1)

Γ(α)(1−q)
H2,1

3,2

[
(δ (1−q))

1
β t
∣∣∣∣(1−α, 1

β
),(2+ 1

1−q ,
1
β
),(1,1)

(0,1),(1, 1
β
)

]
, (4.11)

for α > 0,x > 0, and hazard function

λ2(t) = (δ (1−q))
1
β

tβ−1H1,1
2,1

[
(δ (1−q))

1
β t
∣∣∣∣(1−α− 1

β
, 1

β
),(2+ 1

1−q−
1
β
, 1

β
),(1,1)

(0,1),(1− 1
β
, 1

β
)

]

H2,1
3,2

[
(δ (1−q))

1
β t
∣∣∣∣(1−α, 1

β
),(2+ 1

1−q ,
1
β
),(1,1)

(0,1),(1, 1
β
)

] , (4.12)

for t > 0,δ > 0,β > 0.
The graphs of λ2(t) for various values of the parameters are given in the following figures.

Figure 8 Figure 9

Figure 8. The graph of λ2(t) for various values of the parameters α,β ,δ and q.
Figure 9. The graph of λ2(x) for various values of the parameters α,β ,δ and q.
For q < 1, the extended Weibull-gamma failure rate is monotonically decreasing function, which is
shown in Figure 8 and Figure 9.
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The hazard rate function of the extended Weibull-gamma model has shape like log-logistic,
generalized Weibull and log-normal distributions. Which shows the importance of the new model
in the area of reliability and survival analysis.

5. Estimation of parameters

Before a density function can be used to model any given data the important factor is to estimate
the parameters in the model. Here we use method of moments for estimating the parameters of the
extended Weibull-gamma model. The method of moments consists of equating sample moments
with corresponding population moments and then the parameters are estimated by solving these
equations.

Let m j be the jth sample moment. In (4.2), put h = 1,2,3, we get the first three moments of the
extended Weibull-gamma model and then we equate the sample moments with the corresponding
population moments. That is,

m1 = Ê(x) =
(2− q̂)δ̂Γ( 1

β̂
+1)Γ( 1

q̂−1 −
1
β̂
−1)Γ(α̂− 1

β̂
)

Γ(α̂)Γ( 1
q̂−1)((q̂−1)δ̂ )

1
β̂ +1

, (5.1)

for α̂ > 0, α̂− 1
β̂
> 0, 1

q̂−1 −
1
β̂
> 0, where a hat indicates the estimated value.

m2 = Ê(x2) =
(2− q̂)δ̂Γ( 2

β̂
+1)Γ( 1

q̂−1 −
2
β̂
−1)Γ(α̂− 2

β̂
)

Γ(α̂)Γ( 1
q̂−1)((q̂−1)δ̂ )

2
β̂ +1

, (5.2)

for α̂ > 0, α̂− 2
β̂
> 0, 1

q̂−1 −
2
β̂
> 0.

m3 = Ê(x3) =
(2− q̂)δ̂Γ( 3

β̂
+1)Γ( 1

q̂−1 −
3
β̂
−1)Γ(α̂− 3

β̂
)

Γ(α̂)Γ( 1
q̂−1)((q̂−1)δ̂ )

3
β̂ +1

, (5.3)

for α̂ > 0, α̂− 3
β̂
> 0, 1

q̂−1 −
3
β̂
> 0.

The parameter δ can be removed using the ratio of moments. Suppose we take the ratio m2
m12 and

m1m3
m22 . Thus we see that m2

m12 and m1m3
m22 are equations in q̂, α̂ and β̂ in terms of gamma functions. The

estimators of the parameters can be evaluated as follows:
Case. 1: α is fixed:

If the parameter α is fixed, then we have two equations in terms of β̂ and q̂. Due to the presence
of gamma functions in the moment equations m2

m12 and m1m3
m22 , the explicit solution for the parameters

is difficult. But with the help of Newton-Raphson iteration method, we can estimate the parameters.
Case. 2: β is fixed:

In this case, the moment equations are in terms of q̂ and α̂ . Using the above procedure we can
estimate the parameters q and α .
Case. 3: When all the parameters are unknown:

Let m1,m2 and m3 be the first three sample moments and let E(x), E(x2), E(x3) be the corre-
sponding population moments. The parameters are estimated by using the moment equations m2

m12

and m1m3
m22 . Thus we see that m2

m12 and m1m3
m22 are equations in q̂, α̂ and β̂ in terms of gamma functions.

For the range of values of q,α and β , the gamma is well defined and we can solve for the parameters
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by using m2
m12 and m1m3

m22 with any numerical technique. The moment estimators are not easy to evalu-
ate when all the parameters are unknown. If we take the moment of order h which are multiples of
β , then the estimator can be obtained explicitly.

6. Application

In this section, the usefulness of the extended Weibull-gamma model is illustrated on a real data set.
The above results are essentially used for modeling and inference of cancer survival data, the

methodology is applicable for identification of distribution and estimation of parameters. Here we
test the fitting of the proposed model (3.18) which is compared with the Weibull-gamma model (3.3)
on lung cancer survival data. Lung cancer is the leading cause of cancer death and the second most
diagnosed cancer in both men and women. The lung cancer data is collected from United States
cancer statistics for the years 1999 to 2010.

Maple 14 has been used for computing the data moments and estimating the parameters (by
method of moments). The adequacy of the model is tested using Kolmogrov-Smirnov (KS) test
statistic. The estimation results and Kolmogrov-Smirnov test statistic results are summarized in
Table 1.

Distribution Parameter estimation KS test
Extended Weibull-gamma (q > 1) δ̂ = 0.586, α̂ = 1, β̂ = 2.34,q = 1.1 0.447
Extended Weibull-gamma (q < 1) δ̂ = 1.564,α̂ = 1 , β̂ = 0.237, q = 0.5 0.435

Weibull-gamma δ̂ = 1.568, α̂ = 1.87, β̂ = 4.56 0.511

Table 1. Parameter estimation and KS test statistic values

The probability plots are given in the following figures.

Figure 10 Figure 11

Figure 10. The probability plot for the extended Weibull-gamma model.
Figure 11. The probability plot for the Weibull-gamma model.
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From the Kolmogrov-smirnov goodness of fits test, we can observe that the extended Weibull-
gamma model fits fairly well to the lung cancer data. However, the extended Weibull-gamma model
produces the lowest Kolmogrov-smirnov test statistic value and therefore fits better than the usual
Weibull-gamma model.
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