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Abstract. We adopt suitable numerical method to study the solitary waves of nonlinear Dirac
equation in complex system. In some conditions, using nonlinear Dirac equation, we can better
describe the macroscopic electrical phenomena and features generated by large amounts of
electrons. As a result, we found the solitary wave's integral parameter plays an important role.
With the increase of the integral parameter, the solitary wave's characteristic scale is becoming
smaller, and the solitary wave more and more like a classical particle.

1 Introduction
In 1928 the British physicist P. Dirac presented a relativistic quantum mechanics equation which
describes the movement of an electron, namely, Dirac equation [1]. It is the Lorentz covariant
modified Schrödinger equation, and can meet the special theory of relativity and quantum mechanics
simultaneously. However, Dirac equation, even taking into account the role of non-self-excitation
field, can only be seen as the linear partial differential equations. The so-called linear equations satisfy
the principle of linear superposition, and linear superposition of any two solutions is still a solution of
the equation.

The scholars proposed more and more other nonlinear Dirac spinor field schemes [2-10], which
can be applied in a mass of complex systems, including the nonlinear chemical reaction diffusion
system, the complex biological tissue system, etc. In some conditions, using the nonlinear equation,
we can more convenient to describe the macroscopic electrical phenomena and features generated by
large amounts of electrons [5].

2 Nonlinear Dirac model

Using natural working unit system ( 10  c ), the Lagrangian action density of
Dirac equation under the electromagnetic fields is written by

),,(  



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a Zhengning Gan : gzn8060@163.com
A Project Supported by Scientific Research Fund of Hunan Provincial Education Department

International Conference on Engineering and Technology Innovations (ICETI 2016)

© 2016. The authors - Published by Atlantis Press 285



where  is the spinor field, 0  , and  are Dirac matrices which meet the relations
  2 ,  is a constant, and 2)(),(  f is a nonlinear self-

energy item, and ignore the effects excited by coupled electromagnetic field [11]. So the action of the
nonlinear Dirac system is

.31
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t

t  
 (2)

By means of the variational principle, we obtain the nonlinear Dirac field equation as
.)(2  




  Aei (3)

It is clear that the constant  can determine the strength of nonlinear interaction.

3 The steady state solutions of the solitary wave
Now we consider the steady state solitary wave solutions. In this case, the Dirac feild

iEtexx  )()(
 , the external electromagnetic vector fields )()( xUxA


  , where

),( xtx


 . Then we obtain the steady state equation as

.)(20  
  UeiE k

k (4)

This is a nonlinear eigenvalue equation, and the eigenfunction is  , the eigenvalue energy is E .
The above equation can also be expressed by

)./())(2( 2  


 eUiE k
k (5)

Assuming that the characteristic space scale is ]),[],,[],,([ LLLLLL  , using the
variational principle, we obtain the following solitary wave approximate normalized solution
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,0),,,( tzyx ]),[],,[],,([),,( LLLLLLzyx  (7)

where the characteristic amplitude TA ]0,0,0,141956.0[ 
 , the characteristic length

3/1)(224923.1  L , the eignvalue 00  E and the integral parameter

0 . It is proved that the solitary wave is stable for small perturbations [1].
When the center point of the solitary wave is at the coordinate origin )0,0,0( , the wave

function density distribution on the plane 0z is shown in Fig. 1. As the integral parameter
increased from 1.0 to 7.0 , the peak of the wave function density increased from 12896.0 to
90279.0 , and the characteristic scale L decreased from 63902.2 down to 37957.1 . So we

found the integral parameter  plays an important role in forming the structure of the solitary wave.

4 The motion of the solitary waves interacting with external fields
Using (6) and (7), combined with Lorentz transformation, we can obtain a solitary wave solutions

with linear motion:
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where the amplitude parameter is given by
T
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the group speeds are Epv xx / , Epv xx / and Epv xx / , and the energy
2
0

222 EpppE zyx  . The peak position ))(),(),(( tZtYtX is also the center

position of the solitary wave, which is given by ),,())(),(),(( tvtvtvtZtYtX zyx .
In the following, we will discuss the motion of the solitary waves interacting with external fields.

Since the solitary wave is stable for small perturbations, we could assume that the shape of the solitary
wave is approximately unchanged. So we could focus on the movement of the wave peak point of the
solitary wave. Using the variational principle, we have
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where DL is given by 2)(  



  AeiLD . Substituting (8)

and (9) into (10), we obtain
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In the the frame of reference  , the origin point of which is always the center point of the
solitary wave, we obtain
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For low speed conditions, applying the time dilation formula for fixed point measurement

dtVtd 21
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is the external potential field. Substituting the above items into (12), we obtain
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Further simplification, we obtain
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where the wave center position )(tXX


 , the wave center velocity dtXdtVV /)(


 ,
the solitary wave inertia quality 2/M , and the modified parameter

3/2
0 )/(0080053.0  K . Using the variational principle, we obtain the motion equation of

the wave center:
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Compared with the motion equation of classical particle, the additional item is
))(( 2

02
1 XUK


 .

We then study the trajectory of the center point of the solitary wave under the three-dimensional
external potential U )( 2222

2
1 zyxM  . Since 0))(( 2

02
1  XUK


, the

trajectory is as same as that of the particle in classical mechanics. Suppose the external potential field
2222

14
1 )( zyxKU  , then 0))(( 2

02
1  XUK


, which leads to the differences of

the trajectories between the center point of the solitary wave and that of the classical particle, as
shown in Figure 2. When the integral promoter 3.0 , We can observe that the quasi-
movement cycle is roughly 5.2 , and the amplitude increased from 04.0 to 048.0 . when

7.0 , the quasi-movement cycle is roughly 13.5 , and the amplitude increased slowly from
082.0 to 084.0 . When the integral parameters further increased to 9.0 , the movement cycle

becomes 28.6 . The right diagram in Fig. 2 describes the situation of the classical particle, and the
cycle is near to 16.11 , the amplitude is 2.0 .

Since the characteristic amplitude TA ]0,0,0,141956.0[0 
 , the characteristic length

3/1)(224923.1  L , and the modified parameter 3/2
0 )/(0080053.0  K , we

obtain ~2
0A , 3/1~ L , and 3/2

0 ~ K . Overall, with the increase of the
integral parameter  , the characteristic parameters of the solitary wave motion are constantly close
to the relevant parameters of the classical particle.

Figure 1.The wave function density distribution ρ=ψ⁺ψ on the plane z=0 is shown. From left to right and from up

to down, the integral parameter Λ is selected as 0.1, 0.3, 0.5, 0.7, respectively. The parameters of the equation are
given by e=1, μ=1 and λ=1.
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Figure 2.The evolution of the X-axis coordinate of the center point. From left to right and from up to down, the
integral parameterΛ is selected as 0.3, 0.7, 0.9,∞, respectively. For classical particles,Λ→∞. The parameters
of the equation are given by e=1,μ=1 andλ=1.

5 Conclusions
In summary, the theoretical analysis and numerical calculations show that the integral parameter
plays a decisive role on the characteristics of the solitary wave. First, with the increase of the integral
parameter, the characteristic scale is shrinking, and the characteristic magnitude is increasing.
Secondly, the motion of the center point of the solitary wave is related with the integral parameter.
With the increase of the integral parameter, the solitary wave more and more like a classical particle.

We are grateful to Professor Xinming Cheng for helpful proposal and discussion.
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