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Abstract. We first present a formula on the conditional expectation by the regular conditional distribution function. 
Using this formula, we can obtain a corollary under the condition of independence which applies in many cases. Then 
some examples are given to illustrate the applications of the results.  

Introduction 

Given a random variable X  on a probability space ( , , )F PW , and a subs - field G FÌ , the conditional 

expectation of X  given G denoted by [ | ]E X G is well known and is an important mark of modern probability. 
Kallenberg ([1]) listed its precise definitions and many properties. Ikeda([2]) and Jiagang Wang([3]) discuss the 
conditonal expectation in terms of regular conditional probability and regular conditional distribution function 
respectively.  

This paper uses the regular conditional distribution function respectively to give a formula on the conditional 

expectation when some of the random variables are G -measurable. This result is intuitive and used frequently. The 
calculations of many typical examples([4])  potentially use this property, but no authors give detailful explanations.  

In the following, we let ( , , )F PW be a probability space, G be a subs - field of F , 1 2, ,..., nX X X
 be 

random variables on ( , , )F PW .  

Definition 1. ([3]) A function 1 2( , ,... , )nF x x x w
 on 

n´W  is called a regular conditional distribution 

function of ( 1 2, ,..., nX X X
) given G , if it satisfies all the following : 

(1) 1 2( , ,... , )nF x x x w
is G -measurable for fixed 1 2, ,..., nx x x

; 

(2) 1 2( , ,... , )nF x x x w
 is an n-dimensional distribution function for fixedw ; 

(3) 1 21 2 ( , ) ( , ) ... ( , ) 1( , ,..., , ) [1 ( ,... ) | ],  a.s.
nn x x x nF x x x E X X Gw -¥ ´ -¥ ´ ´ -¥=

 
 

We denote this regular conditional distribution function by 1 2( , ,..., , )G nF x x x w
. 

 

Lemma 1. ([3]) Suppose 1 2( , ,..., )nf x x x
 is a Borel function such that 1 2( , ,..., )nf X X X

is integrable. Then we 
have 

       
1 1 1 2[ ( ,... ) | ] ( ,..., ) ( , ,..., , ) a.s.

n
n n G nE f X X G f x x dF x x x w=ò

 
 

Lemma 2.  ([2]) Let ,X Y be two integrable random variables on ( , , )F PW , X  be G -measurable, and XY be 
integrable. Then 

                        [ | ] [ | ] . .E XY G XE Y G a s=  
 

Main Results 

Theorem 1 Let X,Y be two random variables, X  be G -measurable, and f be a Borel function defined on 
2

 such that ( , )f X Y  is integrable. Then 

[ ( , ) | ] ( ( ), ) ( , ) a.s.   GE f X Y G f X y dF yw w=ò                         (1) 
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where 
( )GF y

 is the regular conditional distribution function of Y  given G . 
 

Proof. We first prove (1) for all 
1 ( , )A Bf x y´=

, where A  and B are any Borel sets on . By lemma 1 and 
lemma 2, we have 

                 

[1 ( , ) | ] 1 ( ( )) [1 ( ) | ]

1 ( ( )) 1 ( )d ( , ) 1 ( ( ))1 ( )d ( , )

1 ( ( ), )d ( , )

A B A B

A B G A B G
R R

A B G
R

E X Y G X E Y G

X y F y X y F y

X y F y

w

w w w w

w w

´

´

=

= =

=

ò ò

ò
 

i.e., (1) holds for 
1 ( , )A Bf x y´=

. 
 

Let M  denote the set
{ }:  (1) holds  for 1 ( , )DD f x y=

，  and N  denote the 

set
{ }: ,  are Borel setsA B A B´

. Obviously, M  is a l - system and N  is a p -system. M  contains N  

due to the above proof, so M  contains the s -field generated by N . That is M  contains all Borel sets on
2

. 

Thus (1) holds for all 
1 ( , )Df x y=

, where D  is any Borel set. Hence (1)holds for all simple functions on 
2

. 

Furthermore, every nonnegative measurable function f  satisfies (1) by Levy monotone convergence theorem. As for 

a general Borel function ( , )f x y , we write f f f+ -= - , where max( ,0)f f+ = , max( ,0)f f- = - . Since 

(1) holds for both f +

 and f -

, it obviously holds for f .  
The proof is completed. 

 

Remark 1.  The well-known Lemma 2 is a special case of the above Theorem when we take f XY= . In fact, by 
Theorem 1, 

                                

( | ) ( ) ( , )

( ) ( , ) ( ) [ | ]

G

G

E XY G X ydF y

X ydF y X E Y G

w w

w w w

=

= =

ò

ò
 

the last “=” is due to Lemma 1. 
Recalling the independence between a random variable and a s - field([1]), we have the following corollary of 

Theorem 1. 
 

Corollary 1. Let ,X Y be two random variables, X  be G -measurable and Y  be independent of G . Then for any 

Borel function f  such that  ( , )f X Y  is integrable, we have 

                      ( )[ ( , ) | ] [ ( , )] |x XE f X Y G E f x Y w==
. 

Proof. Since Y is independent of G , 
( , ) ( )G YF y F yw =

, where 
( )YF y

is the distribution of Y . So from 
Theorem 1,  

            
( )

[ ( , ) | ] ( ( ), ) d ( , )

( ( ), ) d ( ) [ ( , ) | ] | .

G

Y x X

E f X Y G f X y F y

f X y F y E f x Y G w

w w

w =

=

= =

ò

ò
 

 
Remark 2. The deriviation of B-S formula for European options’ price([5], page 118) is implicitly uses this corollary.  

Corollary 2. Suppose ,X Y  are random variables, and G is a s - algebra.   If X  is independent of ( , )Y Gs (the 
s - algebra generated by Y  and G  ).  Then we have         

                      [ | ] [ | ]E XY G EX E Y G= . 
Proof.  By the tower property of conditional expection and corrollary 1, we have 
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[ | ] [ [ | ] | ( , )]

[ [ | ( , )] | ]

[ ( ) | | ]

[ | ]

[ | ].

y Y

E XY G E E XY G Y G

E E XY Y G G

E E X y G

E EX Y G

EX E Y G

s

s

=

=

=

=

=

=  
 
The following Example 1 is a intuitive illustration of Theorem 1. Example 2 appears frequently in many textbooks but 
the authors always omit the detailful explanation on the crucial step  in the calculation. Here Corollary 2 makes the  
crucial step more explicit. 

Example 1. Let X  be a discrete random variable with distribution 
( 1) 0.2, ( 2) 0.3, (X 3) 0.5P X P X P= = = = = = . Suppose the regular conditional distribution function of Y  

given ( )Xs (the s - field generated by X ) is  

                         

( ) y

(X)

1 , 0
(y, )

0,            0.

Xe y
F

y

w

s w
-ì - >ï

= í
£ïî      

 Then 

               

2 2 2

2

( ) ( ) ( )
(X)

(0, )

( ( ) ( ))

(0, )

( | ( )) (y, ) ( )

( )

1/ 2, ( ) 1,

1/ 3, ( ) 2,

1/ 4, ( ) 3.

X Y X y X y X y

X X y

E e X e dF e X e dy

X e dy

X

X

X

w w w
s

w w

s w w

w

w

w

w

- - - -

+¥

- +

+¥

= =

=

ì =
ïï

= =í
ï

=ïî

ò ò

ò

 
 

Example 2. Suppose a cashflow comes in according to a Poisson process with intensity l . The coming cash each time 

( iC
) is often assumed to be a random variable with the same normal distrubutions and the cashflows are independent of 

the Poisson process. The discount rate is r . Calculate the expected present value (PV) of all the cashes during the time 
inteval [0,t]. 

 

  We all know the expectation is  

                          

1 1

1 1

[ ] [ [ | ]]

[ | ] ( ).

t t
i i

i

N N
r r

i i t
i i

n
r

i t t
n i

E C e E E C e N

E C e N n P N n

t t

t

- -

= =

¥
-

= =

=

= = =

å å

å å
 

The textbooks often straightly display  

1
1 1

[ | n] [ | n]i i

n n
r r

i t t
i i

E C e N EC E e Nt t- -

= =

= = =å å
 

but never say why.  

Now from Corollary 2, we know  

[ | n] [ | n]i ir r
i t i tE C e N C E e Nt t- -= = =

, 

since iC
 is independent of 

( , )i tNs t
(this is in that the cashflows are independent of the Poisson process). As far, 

we know why iC
 can be drawn out of the expection symbol. 
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Theorem 1 can easily be extended to the case of high dimensions as follows. 
 

Theorem 2. Suppose 1 2, ,..., nX X X
 and 1 2, ,..., mY Y Y

 are random variables on ( , , )F PW , and  1 2, ,..., nX X X
 

are G -measurable. For  every integrable 1 2 1 2( , ,..., , , ,..., )n mf X X X Y Y Y
, we have  

                 

 
1 2 1 2

1 2 1 2 1 2

[ ( , ,..., , , ,..., ) | ]

( ( ), ( ),..., ( ), , ,..., ) ( , ,..., , )
m

n m

n m G m

E f X X X Y Y Y G

f X X X y y y dF y y yw w w w=ò  
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