Notes on the Conditional Expectation

Cheng Wang ${ }^{1, \text { a }}$, Xueyi Liu ${ }^{2}$, Hailei Zou ${ }^{3}$
${ }^{1,2,3}$ Department of Applied Mathematics, China Jiliang University, HangZhou, 310018, China
aemail: wangc628@126.com

Keywords: Conditional expectation, Regular conditional distribution function, Independence,Yule process.
Abstract. We first present a formula on the conditional expectation by the regular conditional distribution function. Using this formula, we can obtain a corollary under the condition of independence which applies in many cases. Then some examples are given to illustrate the applications of the results.

Introduction

Given a random variable X on a probability space (Ω, F, P), and a sub σ - field $G \subset F$, the conditional expectation of X given $G_{\text {denoted by }} E[X \mid G]_{\text {is well known and is an important mark of modern probability. }}$. Kallenberg ([1]) listed its precise definitions and many properties. Ikeda([2]) and Jiagang Wang([3]) discuss the conditonal expectation in terms of regular conditional probability and regular conditional distribution function respectively.

This paper uses the regular conditional distribution function respectively to give a formula on the conditional expectation when some of the random variables are G-measurable. This result is intuitive and used frequently. The calculations of many typical examples([4]) potentially use this property, but no authors give detailful explanations.

In the following, we let (Ω, F, P) be a probability space, $G_{\text {be a sub }} \sigma$ - field of $F, X_{1}, X_{2}, \ldots, X_{n}$ be random variables on (Ω, F, P).

Definition 1. ([3]) A function $F\left(x_{1}, x_{2}, \ldots x_{n}, \omega\right)$ on $\square^{n} \times \Omega$ is called a regular conditional distribution function of ($X_{1}, X_{2}, \ldots, X_{n}$) given G, if it satisfies all the following:
(1) $F\left(x_{1}, x_{2}, \ldots x_{n}, \omega\right)$ is G-measurable for fixed $x_{1}, x_{2}, \ldots, x_{n}$;
(2) $F\left(x_{1}, x_{2}, \ldots x_{n}, \omega\right)$ is an n-dimensional distribution function for fixed ${ }^{\omega}$;
(3) $F\left(x_{1}, x_{2}, \ldots, x_{n}, \omega\right)=E\left[1_{\left(-\infty, x_{1}\right) \times\left(-\infty, x_{2}\right) \times \ldots \times\left(-\infty, x_{n}\right)}\left(X_{1}, \ldots X_{n}\right) \mid G\right]$, a.s.

We denote this regular conditional distribution function by $F_{G}\left(x_{1}, x_{2}, \ldots, x_{n}, \omega\right)$
Lemma 1. ([3]) Suppose $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is a Borel function such that $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is integrable. Then we have

$$
E\left[f\left(X_{1}, \ldots X_{n}\right) \mid G\right]=\int_{\square^{n}} f\left(x_{1}, \ldots, x_{n}\right) d F_{G}\left(x_{1}, x_{2}, \ldots, x_{n}, \omega\right) \text { a.s. }
$$

Lemma 2. ([2]) Let X, Y be two integrable random variables on $(\Omega, F, P), X$ be G-measurable, and $X Y$ be integrable. Then

$$
E[X Y \mid G]=X E[Y \mid G] \quad \text { a.s. }
$$

Main Results

Theorem 1 Let X, Y be two random variables, X be $G_{\text {-measurable, and }} f_{\text {be a Borel function defined on }}$ \square^{2} such that $f(X, Y)$ is integrable. Then

$$
\begin{equation*}
E[f(X, Y) \mid G]=\int_{\square} f(X(\omega), y) d F_{G}(y, \omega) \text { a.s. } \tag{1}
\end{equation*}
$$

where $F_{G}(y)$ is the regular conditional distribution function of Y given G.
Proof. We first prove (1) for all $f=1_{A \times B}(x, y)$, where A and B are any Borel sets on \square. By lemma 1 and lemma 2, we have

$$
\begin{aligned}
& E\left[1_{A \times B}(X, Y) \mid G\right]=1_{A}(X(\omega)) E\left[1_{B}(Y) \mid G\right] \\
& =1_{A}(X(\omega)) \int_{R} 1_{B}(y) \mathrm{d} F_{G}(y, \omega)=\int_{R} 1_{A}(X(\omega)) 1_{B}(y) \mathrm{d} F_{G}(y, \omega) \\
& =\int_{R} 1_{A \times B}(X(\omega), y) \mathrm{d} F_{G}(y, \omega)
\end{aligned}
$$

i.e., (1) holds for $f=1_{A \times B}(x, y)$.

Let M denote the set $\left\{D:(1)\right.$ holds for $\left.f=1_{D}(x, y)\right\}$, and N denote the set $\{A \times B: A, B$ are Borel sets $\}$. Obviously, M is a λ - system and N is a $\pi_{\text {-system. } M \text { contains } N}$ due to the above proof, so M contains the $\sigma_{\text {-field generated by }} N$. That is M contains all Borel sets on \square^{2}. Thus (1) holds for all $f=1_{D}(x, y)$, where D is any Borel set. Hence (1)holds for all simple functions on \square^{2}. Furthermore, every nonnegative measurable function f satisfies (1) by Levy monotone convergence theorem. As for a general Borel function $f(x, y)$, we write $f=f^{+}-f^{-}$, where $f^{+}=\max (f, 0), f^{-}=\max (-f, 0)$. Since (1) holds for both f^{+}and f^{-}, it obviously holds for f.

The proof is completed.
Remark 1. The well-known Lemma 2 is a special case of the above Theorem when we take $f=X Y$. In fact, by Theorem 1,

$$
\begin{aligned}
& E(X Y \mid G)=\int_{\square} X(\omega) y d F_{G}(y, \omega) \\
& =X(\omega) \int_{\square} y d F_{G}(y, \omega)=X(\omega) E[Y \mid G]
\end{aligned}
$$

the last " $=$ " is due to Lemma 1 .
Recalling the independence between a random variable and a σ - field([1]), we have the following corollary of Theorem 1.

Corollary 1. Let X, Y be two random variables, X be G-measurable and Y be independent of G. Then for any Borel function f such that $f(X, Y)$ is integrable, we have

$$
E[f(X, Y) \mid G]=\left.E[f(x, Y)]\right|_{x=X(\omega)}
$$

Proof. Since Y is independent of $G, F_{G}(y, \omega)=F_{Y}(y)$, where $F_{Y}(y)$ is the distribution of Y. So from Theorem 1,

$$
\begin{aligned}
& E[f(X, Y) \mid G]=\int_{\square} f(X(\omega), y) \mathrm{d} F_{G}(y, \omega) \\
& =\int_{\square} f(X(\omega), y) \mathrm{d} F_{Y}(y)=\left.E[f(x, Y) \mid G]\right|_{x=X(\omega)} .
\end{aligned}
$$

Remark 2. The deriviation of B-S formula for European options' price([5], page 118) is implicitly uses this corollary.
Corollary 2. Suppose X, Y are random variables, and G is a σ-algebra. If X is independent of $\sigma(Y, G)$ (the
$\sigma-$ algebra generated by Y and G). Then we have

$$
E[X Y \mid G]=E X \sqcap E[Y \mid G]
$$

Proof. By the tower property of conditional expection and corrollary 1, we have

$$
\begin{aligned}
& E[X Y \mid G]=E[E[X Y \mid G] \mid \sigma(Y, G)] \\
& =E[E[X Y \mid \sigma(Y, G)] \mid G] \\
& =E\left[\left.E(X \square y)\right|_{y=Y} \mid G\right] \\
& =E[E X \subset Y \mid G] \\
& =E X \sqcap E[Y \mid G] .
\end{aligned}
$$

The following Example 1 is a intuitive illustration of Theorem 1. Example 2 appears frequently in many textbooks but the authors always omit the detailful explanation on the crucial step in the calculation. Here Corollary 2 makes the crucial step more explicit.
Example 1. Let X be a discrete random variable with distribution $P(X=1)=0.2, P(X=2)=0.3, P(\mathrm{X}=3)=0.5$. Suppose the regular conditional distribution function of Y given $\sigma(X)$ (the σ - field generated by X) is

$$
F_{\sigma(\mathrm{X})}(\mathrm{y}, \omega)=\left\{\begin{array}{lc}
1-e^{-X(\omega) \mathrm{y}}, & y>0 \\
0, & y \leq 0
\end{array}\right.
$$

Then

$$
\begin{aligned}
& E\left(e^{-X^{2} Y} \mid \sigma(X)\right)=\int_{\square} e^{-X^{2}(\omega) y} d F_{\sigma(X)}(\mathrm{y}, \omega)=\int_{(0,+\infty)} e^{-X^{2}(\omega) y} X(\omega) e^{-X(\omega) y} d y \\
& =X(\omega) \int_{(0,+\infty)} e^{-\left(X^{2}(\omega)+X(\omega)\right) y} d y \\
& = \begin{cases}1 / 2, & X(\omega)=1, \\
1 / 3, & X(\omega)=2, \\
1 / 4, & X(\omega)=3 .\end{cases}
\end{aligned}
$$

Example 2. Suppose a cashflow comes in according to a Poisson process with intensity λ. The coming cash each time ${ }^{(}{ }_{i}$) is often assumed to be a random variable with the same normal distrubutions and the cashflows are independent of the Poisson process. The discount rate is r. Calculate the expected present value (PV) of all the cashes during the time inteval [0,t].

We all know the expectation is

$$
\begin{aligned}
& E\left[\sum_{i=1}^{N_{t}} C_{i} e^{-r \tau_{i}}\right]=E\left[E\left[\sum_{i=1}^{N_{t}} C_{i} e^{-r \tau_{i}} \mid N_{t}\right]\right] \\
& =\sum_{n=1}^{\infty} E\left[\sum_{i=1}^{n} C_{i} e^{-r \tau_{i}} \mid N_{t}=n\right] P\left(N_{t}=n\right)
\end{aligned}
$$

The textbooks often straightly display

$$
E\left[\sum_{i=1}^{n} C_{i} e^{-r \tau_{i}} \mid N_{t}=\mathrm{n}\right]=E C_{1} \sqcap E\left[\sum_{i=1}^{n} e^{-r \tau_{i}} \mid N_{t}=\mathrm{n}\right]
$$

but never say why.
Now from Corollary 2, we know

$$
E\left[C_{i} e^{-r \tau_{i}} \mid N_{t}=\mathrm{n}\right]=C_{i}\left[E\left[e^{-r \tau_{i}} \mid N_{t}=\mathrm{n}\right]\right.
$$

since C_{i} is independent of $\sigma\left(\tau_{i}, N_{t}\right)$ (this is in that the cashflows are independent of the Poisson process). As far, we know why C_{i} can be drawn out of the expection symbol.

Theorem 1 can easily be extended to the case of high dimensions as follows.
Theorem 2. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{m}$ are random variables on (Ω, F, P), and $X_{1}, X_{2}, \ldots, X_{n}$ are $G_{\text {-measurable. For }}$ every integrable $f\left(X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{m}\right)$, we have

$$
\begin{aligned}
& E\left[f\left(X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, Y_{2}, \ldots, Y_{m}\right) \mid G\right] \\
& =\int_{\square^{m}} f\left(X_{1}(\omega), X_{2}(\omega), \ldots, X_{n}(\omega), y_{1}, y_{2}, \ldots, y_{m}\right) d F_{G}\left(y_{1}, y_{2}, \ldots, y_{m}, \omega\right)
\end{aligned}
$$

Acknowledgement

In this paper, the research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14A010026 and LY14F030020.

References

[1] Kallenberg, O. Foundations of modern probability. Springer, Berlin. 1997.
[2] Iketa, N., Watanabe, S. Stochastic differential equations and diffusion processes. NorthHolland, Amsterdamg. 1989.
[3] Wang, JG. Basics of modern probability. FuDan University Press, ShangHai, 2010.
[4] Ross, Sheldon. Stochastic processes. China Machine Press, Beijing, 2013
[5] Alison, E. A course in financial calculus. Cambridge University Press, Cambridge. 2008.

