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Abstract: In this paper, two inverse vibration problems of constructing a grounding spring-mass 

system from its two eigenpairs and part of spring stiffness are considered. The vibration system is 

constrained to satisfy a relation that the total mass of system is a constant, and the problems are 

transferred into inverse eigenvalue problems for Jacobi matrix. The necessary and sufficient 

conditions for the construction of physically realizable systems with positive parameters are derived. 

Furthermore, the corresponding numerical algorithms and numerical example are given.  

Introduction 

Spring-mass systems are the basic dynamic systems. Many inverse vibration problems can be 

divided into inverse vibration problems of spring-mass systems by using lumped mass method or 

finite difference method. The vibration includes the longitudinal vibration of rod, the lateral vibration 

of string, the torsional vibration of hub disk and so on.  Inverse vibration problems for spring-mass 

systems, generally speaking, are how to determine the physical elements of the systems from part 

natural frequencies (eigenvalues) or vibration modes (eigenvectors) or some physical parameters.  

Related research has important application in vibration control, structural design, parameters 

identification, etc. The problems are transferred into inverse eigenvalue problems for Jacobi matrices 

in mathematics. Recently, some new results have been obtained on the inverse eigenvalue problems 

for Jacobi matrices, see [1-4]. Using two sets of eigenvalues or two incomplete eigenpairs, the inverse 

vibration problems of spring-mass systems have been studied by Nylen and Uhlig [5], and Huang, et 

al. [6]. Bai [7], and Tian and Dai[8] considered by one eigenpair or two eigenpairs to determine 

spring-mass systems, and proposed numerical algorithms for solving the problems. In view of 

practical engineering problems, this paper studies two classes of inverse vibration problems that are 

generalization of the problem in [8], and constructs the grounding spring-mass system from its two 

eigenpairs, some physical parameters and the total mass of system. The necessary and sufficient 

conditions of unique solution for the two problems are proved, moreover, the expressions of the 

solution and the related numerical algorithms are derived.  

Assume that anterior p  particles of a spring-mass system are connected to the ground by springs 

(Fig. 1). Generalized eigenvalue equation for the system is: KX MX , where 2  ,   is natural 

frequency, X  is vibration mode,   and X  are respectively eigenvalue and eigenvector of matrix 

pair ( )K,M , particle quality 0im , ungrounded spring stiffness 0( 1,2, , 1)ik i n   , grounded 

spring stiffness 0( 1,2, , )jc j p  , mass matrix is: 1 2( , , , )nM diag m m m , stiffness matrix is: 

 

 
Fig. (1). A grounding spring-mass system 
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In fact, the generalized eigenvalue equation KX MX is equivalent to the standard eigenvalue 

equation JX X , where 1J M K  is n n  Jacobi matrix.  

The problems we considered are as follows.  

Problem 1 Given two eigenpairs of the system (Fig. 1) ( , )X  , ( , )Y ( ,  R  and   ), 

grounded spring stiffness 1

1{ }p

i ic 


 and constant C , find the remaining physical parameters of the 

system, that is, solve particle quality 
1{ }n

i im 
, ungrounded spring stiffness 1

1{ }n

i ik 


 and the p

th
 grounded 

spring stiffness pc .  

Problem 2 Given two eigenpairs of the system (Fig. 1) ( , )X  , ( , )Y ( ,  R and   ), 

ungrounded spring stiffness 1

1{ }p

i ik 


 and constant C , find the remaining physical parameters of the 

system, that is, solve particle quality 
1{ }n

i im 
, grounded spring stiffness 

1{ }p

i ic 
 and ungrounded spring 

stiffness 1{ }n

i i pk 

 .  

In Problem1 and Problem 2, all parameters of the systems should satisfy 

KX MX , KY MY , (1)  

and 
1

n

i

i

m C


 , where K  and M  are respectively stiffness matrix and mass matrix, ( , )X  and 

( , )Y  are respectively the i
'th

 and the j
'th

 eigenpair of the system ' '(1 , )i j n  , when eigenvalues of 

the system are arranged in ascending order, and 1 2( , , , )T

nX x x x , 1 2( , , , )T

nY y y y nR .  

Let 1i i iu x x   ,  1i i iv y y   , i i i i il x v y u   , 1,2, ,i n ,  

1 1i i i i ih x v y u    , 1 1i i i i iq u v u v   , 1,2, , 1i n  ,  

iii yxz )(   , 1 1i i i i if x v y u   , i i i i ig x v y u  , 1

1

i
i i i i

i

l
w w c z

h




  , 1

1

i
i i i i

i

q
t w c f

h




  ,

iiiii gkfkr 1 ,    iiiii lkhks 1 , pi ,,2,1  ,  

1 1 1
1

2 1 11

[ ]
n i n

p p j ji n

i p j p j pp p i j n j

f q l lq u
d

z h h h x h

  


     

      , 
1

1

1

p
p p

i

i p

k g
e C m

z






   ,  

where 000  yx , 00 k , 0 0w  .  

Solvability of the Problems 

In this section, we will discuss the conditions for the solvability of Problem 1 and Problem 2. We 

first present the following definition and lemma for later discussion.  

Definition. (See [9].)  For 1n  real vector 1 2( , , , )T

nX x x x , sign change number of sequence 

1 2, , , nx x x ( that value being equal to zero can be neglected ) is denoted by ( )S X .  

      Lemma. (See [9].)  Let 1{ }n

i i   be eigenvalues of n n  Jacobi matrix J , with n  21 , 

and let ( , )X  be eigenpair of Jacobi matrix J  . Then, ( , )X  is the i
th

 eigenpair of J  if and only if 

( ) 1S X i  , 1,2, ,i n .  
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 Equations (1) can be rewritten as follows. 
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    1,2, ,i n ,    (2)     

where 0 0nk k  , 000  yx , 1 0p nc c    .  

Theorem 1.  Problem 1  has a unique solution if and only if  

(1) '( ) 1S X i  , '( ) 1S Y j  ;  

(2) 0ih  , and , ,i i ih w t  have the same sign, 1,2, , 1i p  ; 0ih  , and , ,i i ih l q  have the same sign,  

1, 2, , 1i p p n    ; 0n nx u  , 0n ny v  , 0nl  ; 

(3) 0d  , d and e   have the same sign;  

(4) 0pz  ，and , ,p p pz r s  have the same sign.  

Proof.  For systems of linear equations (2), since 0 0k  , if  1,2, , 1i p   then 

 
1 1

1 1

,

,

i i i i i i i i

i i i i i i i i

x m u k c x u k

y m v k c y v k





 

 

  


  
have a unique solution if and only if  

1

1

0
i i

i i

x u

y v









 ,  

that is  0ih  , 1,2, , 1i p  , and the solution is 1i i i i
i

i

l k c z
k

h

 
 , 1i i i i

i

i

q k c f
m

h

 
 ,  

Let '

1i i i i iw l k c z  , then 
'

i
i

i

w
k

h
 , thus, 

'

1
1

1

i
i

i

w
k

h






 ,  

Therefore, ' '

1

1

i
i i i i

i

l
w w c z

h




  , Obviously, '

iw and iw  have the same form.  

Let '

i iw w , then i
i

i

w
k

h
 . And 

1 1

1

i
i i i i i i i i

i

q
q k c f w c f t

h
 



    , thus,  

i
i

i

w
k

h
 , i

i

i

t
m

h
 , 1,2, , 1i p  .        (3) 

And for 0ik  , 0im  ,  , ,i i ih w t  have the same sign, 1,2, , 1i p  .  

For systems of linear equations (2), if i p and assume that pk is given, then 

1 1

1 1

,

,

p p p p p p p p

p p p p p p p p

x m x c k u k u

y m y c k v k v





 

 

  


  
have a unique solution if and only if 0

p p

p p

x x

y y









,  

that is  0pz  ,  and the solution is  

p

p

p

r
m

z
 , 

p

p

p

s
c

z
 .                  (4) 

And for 0pm  , 0pc  , , ,p p pz r s  have the same sign.  

In addition, the expressions of pm  and pc can be expanded as follows.  

1p p p

p p

p p

f k g
m k

z z


  , 

1p p p

p p

p p

h k l
c k

z z


  .  

For systems of linear equations (2), if 1, 2, , 1i p p n     and assume that pk is given, then 

1 1

1 1

,

,

i i i i i i

i i i i i i

x m u k k u

y m v k k v





 

 

 


 
have a unique solution if and only if 

1

1

0
i i

i i

x u

y v









 , that is  0ih  , and the 

solution is  

 1
i

i i

i

l
k k

h
 , 1

i
i i

i

q
m k

h
 ,         1, 2, , 1i p p n    .          (5) 

And for 0ik  , 0im  ,  , ,i i ih l q  have the same sign, 1, 2, , 1i p p n    .  
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In addition, the expressions of ik  and im can be expanded as follows.  
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      .  

   For systems of linear equations (2), if i n and assume that 
pk is given, then 

 
1

1

,

,

n n n n

n n n p

x m k u

y m k v













have a unique solution if and only if 1 1n n n n

n

n n

k u k v
m

x y 
   .  

Since 0nm  , 1 0nk   , 0  , 0  , 0n nx u  , 0n ny v  , and n n n nx v y u  , that is 0nl  .  

Therefore,   1n n
n

n

k u
m

x
 or 1n n

n

k v

y
        (6) 

In addition, using the recurrence formula of 
1nk 
, the expression of 

nm can be expanded as follows.  

1

1

1

n
n n i

n n p

j pn n j

u u l
m k k

x x h 





 

   .    From 
1

n

i

i

m C


 and the above expansions of im ( , 1, ,i p p n  ), 

we have  
1

1 1

1 1

p
p p p p

i p p

i p p p

f k g q
m k k

z z h


 

 

  
1 1 1

2 1 1

[ ]
n i n

j ji n
p p

i p j p j pi j n j

l lq u
k k C

h h x h

  

     

     , 

that is   
1 1 1

1

2 1 11

{ [ ] }
n i n

p p j ji n
p

i p j p j pp p i j n j

f q l lq u
k

z h h h x h

  


     

    
1

1

1

p
p p

i

i p

k g
C m

z






   ,  

Therefore,  
p

e
k

d
 .                                                  (7) 

Since 0pk  , 0d  , d and e   have the same sign. Combining with above discussion and with lemma, 

we get the theorem.  

It is not difficult to prove Theorem 2 by the same method which we apply to prove 

Theorem 1. 

Theorem 2.  Problem 2 has a unique solution if and only if  

(1) '( ) 1S X i  , '( ) 1S Y j  ;  

(2) 0iz  , and , ,i i iz r s  have the same sign, 1,2, , 1i p  ; 0ih  , and , ,i i ih l q  have the same sign,  

1, 2, , 1i p p n    ; 0n nx u  , 0n ny v  , 0nl  ; 

(3) 0d  , d and e   have the same sign;  

(4) 0pz  ，and , ,p p pz r s  have the same sign.  

When the above-mentioned conditions are satisfied, the remaining physical parameters of 

spring-mass system have the expressions as follows: 

i

i

i
z

r
m  ,  

i

i

i
z

s
c  , 1,2, , 1i p  ,   

p

p

p

r
m

z
 , 

p

p

p

s
c

z
 ,  p

e
k

d
  ,  1

i
i i

i

l
k k

h
 ,   

1
i

i i

i

q
m k

h
 , 1, 2, , 1i p p n    , 1n n

n

n

k u
m

x
 or 1n n

n

k v

y
 .     

Numerical Method 

Based on the above discussion, we write numerical algorithm for solving Problem 1 as follows. 

Algorithm 1.   

Step 1. Compute ( )S X , ( )S Y . If '( ) 1S X i   or '( ) 1S Y j  , go to step 6.  

Step 2. Compute 1{ }n

i iu  , 1{ }n

i iv  , 1{ }n

i il  , 1

1{ }n

i ih 

 , 1

1{ }n

i iq 

 , 1{ }p

i if  , 1{ }p

i iz  , 1

1{ }p

i iw 

 , 1

1{ }p

i it 

 .  
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Step 3.  If some 0ih  , 1,2, , 1, 1, , 1i p p n    , go to step 6; 

If , ,i i ih w t ( 1,2, , 1i p  ) have different sign, go to step 6;  

If , ,i i ih l q ( 1, 2, , 1i p p n    ) have different sign, go to step 6;   

If  0n nx u   or 0n ny v   or 0nl  , go to step 6. 

Step 4. Compute 1

1{ }p

i ik 


, 1

1{ }p

i im 


, d , e . If 0d   or d , e  have different sign, go to step 6.  

Step 5. Compute 
pk , 

pr , 
ps . If 0pz   or 

pz , 
pr , 

ps  have different sign, go to step 6.  

Step 6. The solution can not be determined uniquely, end the algorithm.  

Step 7. Compute 
pm , 

pc ,  1

1{ }n

i i pk 

  , 1

1{ }n

i i pm 

  , 
nm .  

Example 1. Given 1.0508  , 2.1186  , 8n , 3p ,  2

1{ } {3,2}i ic   ,   

0.6041, 0.5581, 0.4094, 0.3459,(X     0.0691,0.1601,0.0170, 0.07 )54 T  ,  

0.1911,0.1296,0.4811,0.2 95( 3 ,Y   0.3766,0.3127, 0.5350,0. )3635 T  , and 
8

1

35i

i

m C


  , 

construct K  and M such that ( , )X  and ( , )Y  are respectively the 3
rd

 and the 6
th

 eigenpair of the 

system.  

By Algorithm 1, we get  ( ) 2S X  , ( ) 5S Y  . 
8

1{ } { 0.6041,0.0460,0.1487,0.0635,i iu    0.2768,0.2292, 0.1431, 0.0924}  ,   
8

1{ } { 0.1911,0.3207,0.3515, 0.2416,i iv      0.6161,0.6893, 0.8477,0.8985}  ,  

8

1{ } { 0.1233, 0.2007, 0.3028,0.0556,i il      0.2656, 0.0359, 0.1773,0}  ,  

7

1{ } { 0.1850, 0.2470,0.0392,0.0835,i ih     0.1328, 0.0478, 0.0887}  ,  
7

1{ } { 0.1849, 0.0315, 0.0582,0.0278,i iq      0.3320, 0.0957, 0.2069}  ,  
3

1{ } { 0.1849, 0.2154,0.0684}i if     ,   3

1{ } { 0.1233,0.0772,0.2103}i iz    ,  
2

1{ } { 0.3698, 0.2468}i iw     ,  2

1{ } { 0.5548, 0.4939}i it     .  

By (3), we have 2

1{ } {1.9995,0.9995}i ik   , 2

1{ } {2.9999,1.9999}i im   ,  

hence 9.6480d  , 28.9764e  .  By (7), we obtain 3 3.0033k  , hence 3 0.4206r  , 3 0.4204s  .  

By (4), (5), (6), we have 3 2.0001m  , 3 1.9989c  , 7

4{ } {2,3.9991,3.0012,6.0016}i ik   ,  
7

4{ } {0.9984,4.9993,8.0012,7.0021}i im   , 8 6.9992m  .  

Using Matlab, it is easy to get that all generalized eigenvalues of KX MX  are 

( , ) {0.0247,0.3799,1.0508,1.3319,K M   1.9117,2.1188,3.0928,6.4857} .  

The eigenvector which corresponds to eigenvalue 1.0508   is 

0.6041, 0.5581, 0.4094, 0.3459,(X     0.0691,0.1601,0.0170, 0.07 )54 T  ,  

and the eigenvector which corresponds to eigenvalue 2.1188   is  

0.1909,0.1295,0.4807,0.2 92( 3 ,Y   0.3764,0.3127, 0.5354,0. )3639 T  .  

Obviously, 
8

1

35.0001i

i

m


 . The numerical value explain that the algorithm 1 is efficient.  

The algorithm is presented for solving Problem 2 as follows. 

Algorithm 2.   

Step 1. Compute ( )S X , ( )S Y . If '( ) 1S X i   or '( ) 1S Y j  , go to step 6.  

Step 2. Compute 1{ }n

i iu  , 1{ }n

i iv  , 1{ }n

i il  , 1

1{ }n

i ih 

 , 1{ }p

i iz  , 1{ }p

i if  , 1{ }p

i ig  , 1

1{ }p

i ir 

 , 1

1{ }p

i is 

 , 
1

1{ }n

i i pq 

  .  

Step 3.  If some 0iz   or , ,i i iz r s ( 1,2, , 1i p  ) have different sign, go to step 6;  

If some 0ih   or , ,i i ih l q ( 1, 2, , 1i p p n    ) have different sign, go to step 6;   

If  0n nx u   or 0n ny v   or 0nl  , go to step 6. 
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Step 4. Compute 1

1{ }p

i im 


, 1

1{ }p

i ic 

 d , e . If 0d   or d , e  have different sign, go to step 6.  

Step 5. Compute 
pk , 

pr , 
ps . If 0pz   or 

pz , 
pr , 

ps  have different sign, go to step 6.  

Step 6. The solution can not be determined uniquely, end the algorithm.  

Step 7. Compute 
pm , 

pc ,  1

1{ }n

i i pk 

  , 1

1{ }n

i i pm 

  , 
nm .  

Conclusion 

This paper discusses the constructional problems for the spring-mass system whose anterior p 

particles are connected to the ground. Two eigenpairs and anterior p-1 grounded spring stiffness or 

anterior p-1 ungrounded spring stiffness to determine the real vibration system are solved under the 

total mass of system constraint. The necessary and sufficient conditions for the existence and 

uniqueness of the solution are obtained. The results of numerical example show that the proposed  

algorithm work well.  
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