
Loop Query of Big Data with Low Transmission Cost

MA Yana, CHEN Yufeng, KONG Gang, CHEN Suhong

State Grid Shandong Electric Power Research Institute, Jinan, China

ayanpony@126.com

Keywords: fetch operation, loop query, big data, network transmission

Abstract. At present, big data environment in electric power field develops. Our platform has a poor

efficiency of data analysis and the main bottleneck is disk I/O time of fetch operations. In order to

address the problem, we use the characteristics that several tasks usually execute on the same data

sets simultaneously, and propose a Loop Query method based on Fetch operations sharing (LQF). It

lets all the operations on the data set to process each record circularly, which largely improves the

efficiency of data analysis. We also present a Data Placement algorithm with low Transmission cost

(DPT). It extends the queries to the cloud environment and reduces the result transmission cost of

fetch operations. Last extensive experiments show that the proposed LQF algorithm performs 75.4%

better than the benchmark solution when the number of tasks is large, and the DPT algorithm has on

average 47.6% less execution time than random placement method.

Introduction

The rapid development of power grid and the explosion of transmission and transformation

equipment lead to a rapid increase of amount of data. The data are separately collected into different

business information systems during grid operation and equipment monitoring. These systems

include production management system (PMS), energy management system (EMS), condition

monitoring system of transmission and transformation equipment, geographic information system

(GIS) and meteorlogical information system, etc. The environment of electric power big data forms.

Big data platform of equipment condition assessment is used to research dynamic evaluation of load

capacity, fault diagnosis, condition evaluation and risk assessment [1].

The core value of big data is to store and analyze the massive data. In big data environment, the

data engine needs to process huge requests of data analysis from users. Each user has its own

timeliness requirements. In the case, the data engine demands the parallel processing mechanism to

do the numerous tasks of data analyses, which causes a heavy load stress. Thus, an optimization of

parallel processing for big data is necessary to improve the efficiency of data analysis.

In a task of data analysis, there are many fetch operations. The fetch operations of big data do the

data I/O from disks, which cost a long time. Each fetch operation occupies many system resources

and causes the performance bottleneck. Among the massive tasks of data analysis, there appear

several tasks that simultaneously do the fetch operations on one or several data sets, which provide

the conditions for sharing the fetch operations. However, sharing the fetch operations has several

problems such as read/write conflicts and results returning chaos.

In the paper, we design a Loop Query based on Fetch operations sharing (LQF). It recurrently

selects the records in data set and makes multiple fetch operations be shared in order. We also give a

Data Placement algorithm with low Transmission cost (DPT) in the cloud. It puts the data sets usually

used in comprehensive analysis on one or several neighboring nodes, which reduces the transmission

cost of the results of fetch operations and improves the efficiency of data analysis.

International Conference on Mechanical Science and Engineering (ICMSE2015)

© 2015. The authors - Published by Atlantis Press0368 1

Related Work

At present, the tasks of data analysis are processed parallelly in big data environment. About its

performance optimization, it is the common method for multiple threads to share a data processing

resource. Cuzzocrea et al. [2, 3] propose a framework to support effective and efficient OLAP in big

data environment. It combines data partitioning strategy with cloud computing technique to improve

query processing. Li et al. [4] present a scalable distributed system to support real-time query by

extending the MapReduce framework. It periodically materializes the real-time data into a data cube

and compacts the historical versions into one version, which guarantees the response time and

throughput. Arres et al. [5] propose a data warehouse placement policy to improve query gain

performances on multi nodes clusters. It adopts the existing colocation mechanisms to improve query

performances on a Hadoop cluster. Our work in the paper focuses on sharing the fetch operations,

which is a higher layer for sharing.

Loop Query Based on Fetch Operations Sharing

In the section, we introduce the application scenario of sharing the fetch operations, and give the

implementation method of loop query based on fetch operations sharing.

In big data environment, each user issues several tasks of data analysis to the data engine and the

data engine assigns a data processing unit for each task. Let iu denote a processing unit. There are

fetch operations on several data sets in each iu . Assming that jR denotes a data set, the fetch

operation on jR
of iu is denoted as ,i jo . When there are multiple fetch operations on jR , the sharing

of fetch operation can be implemented. As shown in Fig. 1, the steps of the sharing on a data set jR are

as follows.

1) When a processing unit iu issues a fetch operation ,i jo , the ,i jo
operation is added into the

operation set on jR , denoted as
jR

O .

2) If
jR

O is not null, each record r in jR is selected in turn.

3) The record r is respectively processed by the query predicate of each operation in
jR

O , and

the results are then returned to the correponding processing units (denoted as iu) apart for the further

analyses.

4) For any ,i j Ro O , if its once loop query is finished, delete ,i jo from
jR

O .

When a record is selected, LQF sends it to all the ,i jo
in

jR
O . The approach largely reduces

disk I/O operations and the occupation of system resources. The efficiency of data analysis is

improved.

Data Placement with Low Transmission Cost in the Cloud

International Conference on Mechanical Science and Engineering (ICMSE2015)

© 2015. The authors - Published by Atlantis Press0369 2

In the cloud computing environment with share-nothing structure, data transmission is one of the

most time-consuming steps. A processing unit needs to fetch many data sets. The data sets that always

are fetched by the same processing unit are called high-correlation data sets. In the section we

introduce a data placement method with low transmission cost in the cloud (DPT). It puts the

high-correlation data sets on one or several neighboring nodes to reduce the transmission cost of the

results of fetch operations.

Fetch Operation B

Query B

Fetch Operation A

Query A

Fetch Operation C

Query C

Fetch Operation A

Fetch Operation B

Fetch Operation C

Operation Pool

Data Set

Fig. 1. Query processing process based on polling the data sets

The steps of DPT are as follows.

1) The number of the cloud nodes is denoted as n . The collection of data sets is denoted as .

The number of data sets placed on each node is denoted as m .

2) In a period, the degrees of correlation between all the data sets are performed statistics

according to the log of tasks arrival. The concrete method is as follows. Each data set is assumed as a

point. If two data sets are simultaneously accessed by a data analysis , an edge weighted by 1 is added

between them. The weights of the edge are cumulative, i.e., the weight is added by 1 directly if the

edge already exists. All the data sets form a connected graph.

3) An improved clustering algorithm based on K-Means [6] is used to divide into n clusters.

4) The number of data sets in each cluster, denoted as
Cd , is various. The n clusters are sorted in

ascending order of
Cd .

5) Each cluster is in turn placed on the nodes in the cloud. If Cd m holds, multiple clusters are

put on a node. The capacity of each node does not exceed m . If Cd m stands, the cluster is put into

the collection of data sets and is split into several parts with each size m .

6) If stands, do and goto step 3).

International Conference on Mechanical Science and Engineering (ICMSE2015)

© 2015. The authors - Published by Atlantis Press0370 3

Experimental Results

In the section we use the task set of data analysis to validate the performances of both LQF and

DPT. A platform with 24 nodes based on Openstack is built as our experimental environment. Each

node has 4G memory.

The data processing time on task set of data analysis based on LQF in single-node environment

is first validated. The number of tasks in the set ranges from 4 to 64. Assume that the tasks in the set

are issued simultaneously and each task does the fetch operation on the same data set. The

comparison object of LQF is the case when normally executing the task set in parallel, called as

parallel query. As shown in Fig. 2, LQF has an obvious advantage when the number of tasks is large.

This is because LQF just scans once data sets and parallel query has many I/Os. When the number of

tasks is small, the time of scanning once data sets is more than the I/O time of just executing a small

number of tasks. That’s why LQF takes more time at the beginning. Moreover, the execution time of

LQF does not increase largely with the ascending number of tasks, since the I/O step is the main

time-consuming part in data analysis and its time depends on the time of scanning once data sets.

Fig. 2. Data processing time on data sets with different number of tasks

We next demonstrate the execution time of task set based on DPT in the cloud. Assume that the

number of tasks is 16 and each task does data analyses on 3 to 4 data sets. A random placement

method is compared with DPT. Random placement method is to put the data sets randomly on the

nodes. As seen in Fig. 3, DPT takes shorter time especially when the number of nodes is large, while

random placement takes more time due to high transmission cost.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 8 16 32 64E
x
ec

u
ti

o
n

 t
im

e
o
f

ta
sk

 s
et

(s
)

The number of tasks

LQF parallel query

International Conference on Mechanical Science and Engineering (ICMSE2015)

© 2015. The authors - Published by Atlantis Press0371 4

Fig. 3. The execution time of task sets with the number of nodes

Summary

In the paper, we propose a loop query method through sharing the fetch operations called LQF. It

optimizes the parallel processing of big data and solves the existent problem of fetch operations

sharing. A data placement method called DPT is designed as well to further improve the efficiency of

data analysis. It put the data sets with the high degree of correlation on one or several neighboring

nodes in the cloud to reduce the transmission cost. Experiments demonstrate that LQF has better

performance than parallel query when the number of tasks is large and DPT performs 47.6% better

than random placement.

Acknowledgement

This work was supported by the National High Technology Research and Development Program

of China (863 Program) under grant no. 2015AA050204.

References

[1]. X.S. Peng, D.Y Deng, S.J Cheng, J.Y. Wen, Z.H. Li and L. Niu：Key Technologies of Electric

Power Big Data and Its Application Prospects in Smart Grid, Proceedings of the CSEE, Vol.35(1), pp.

503-511 (2015).

[2]. Alfredo Cuzzocrea and Rim Moussa: A Cloud-based Framework for Supporting Effective and

Efficient OLAP in Big Data Environments, the 14th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing, pp. 680-684 (2014).

[3]. Alfredo Cuzzocrea: Analytics over Big Data: Exploring the Convergence of DataWarehousing,

OLAP and Data-Intensive Cloud Infrastructures, the 37th Annual Computer Software and

Applications Conference (COMPSAC), pp. 481-483 (2013).

[4]. Feng Li, M. Tamer O ̈zsu, Gang Chen and Beng Chin Ooi: R-Store: A Scalable Distributed

System for Supporting Real-time Analytics, ICDE Conference, pp. 40-51 (2014).

[5]. Billel Arres, Nadia Kabachi and Omar Boussaid: Optimizing OLAP cubes construction by

improving data placement on multi-nodes clusters, the 23rd Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, pp. 520-524 (2015).

[6]. Ng R.T. and Han J: Efficient and effective clustering methods for spatial data mining, Proc. 20th

Int. Conf. on Very Large Data Bases, pp. 144–155(1994).

International Conference on Mechanical Science and Engineering (ICMSE2015)

© 2015. The authors - Published by Atlantis Press0372 5

