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Abstract. Against the disadvantage of traditional kalman filtering which is susceptible to the 
influence produced by the motion model error, this paper proposes a new kalman filtering method 
which can resist the motion model error. This new method uses the standardized residuals of the 
predictive position errors to choose the appropriate least-square principle between two kinds of 
recursive least-square principles adaptively, so as to achieve the purpose of the robust filtering. The 
experimental results show that, this new method can effectively weaken the effect of motion model 
error and track the moving vehicle’s trajectory accurately in complex movement environment. 

1 Introduction 

If the kalman filtering is applied to dynamic navigation positioning, a more reasonable and 
accurate motion model come first [1] . Domestic and foreign scholars studied the motion model of 
the motor vehicle and put forward the differential polynomial model, uniform model, the 
acceleration model, time correlation model, the "current" statistical model, etc [2]. But each kind of 
the motion model is only suitable for the corresponding motor case. When the motion model is not 
suitable, it could lead to poor filtering effect, even lead to the divergence [3]. 

The predictive state errors of the kalman filtering could reflect the accuracy of the motion model 
to a certain degree [4]. In order to restrain the motion model error, this paper use the standardized 
residuals of the vehicle’s predictive position errors produced by kalman filtering to choose the 
appropriate least-square principle between two kinds of recursive least-square principles adaptively 
and so as to achieve the purpose of the robust filtering. 

2 Kalman Filtering 

2.1 The Kalman Filtering Algorithm 
Kalman filtering is based on state equation and observation equation [5], they are 

, 1 1k k k k kX X W                                      (2.1) 

k k k kL A X e                                            (2.2) 

In (2.1), kX is The state vector at epoch kt ; , 1k k  is the state transition matrix; kW is the state 

model noise; In (2.2), kL is the observation vector at epoch kt ; kA is the observation designed matrix; 

ke is the observation noise. 

Performing the kalman filter based on (2.1) and (2.2), then get the state estimation vector ˆ
kX , its 

concrete steps are from (2.3) to (2.9). 
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(2.9) 

In (2.3), kX is the predicted state vector, , 1k k  denotes the state transition matrix from epoch 

1kt  to epoch kt , 1
ˆ

kX  is the state estimation vector at epoch 1kt  . In (2.4), 
kX is the state predicted 

covariance at epoch kt , 
1

ˆ
kX




is the state estimation covariance matrix at epoch 1kt  ,
kW is the 

covariance matrix of motion model noise. In (2.5), kV is the innovation vector kA is the observation 

matrix, kL is the observation vector. In (2.6), 
kV is the covariance matrix of innovation vector, 

k
 is 

the covariance matrix of observation vector. In (2.7), kK is the gain matrix. In (2.8), ˆ
kX is the state 

estimation vector at epoch kt . In (2.9), ˆ
kX

 is the state estimation covariance matrix at epoch kt . 

2.2 Solving Principles of Kalman Filtering 
It can get the different filtering results based on different solving principles [6]. This paper uses 

two kinds of least-square criterion for filtering, one considers the motion model errors and the 
observation model errors as a whole, then establishes the least-square principle as (2.10).          

1 1
1( ) min

X X Xk k k k

T T
k kk V V V V     

   
(2.10)

 

In (2.10), kV is the residual vector at epoch kt , such as (2.11). 
Xk

V is the predictive state error at 

epoch kt , such as (2.12). 
ˆ

k k k kV A X L                        (2.11) 

ˆ
kx k kV X X                          (2.12) 

The other one is the least-square principle which could resist the motion model error, such as 
(2.13). 

1
2 ( ) min

k

T
k kk V V            (2.13)           

2.3 Choosing From The Two Least-square Principles 
To solve the problem how to choose one from the two least-square principles adaptively, such as 

(2.10) and (2.13), this paper uses the standardized residuals of the predictive position errors to 
choose the appropriate least-square principle between two kinds of recursive least-square principles 
adaptively, so as to achieve the purpose of the robust filtering [4].  

The position values of the predictive state vectors at each epoch which calculated by (2.3) 
is 1 2[ , , , ]T

kX X XL , and [ , , ]T
k k k kX x y z ; the position values of the state estimation vectors at each 

epoch which calculated by (2.8) is 1 2
ˆ ˆ ˆ[ , , , ]T

kX X XL , and ˆ ˆ ˆ ˆ[ , , ]T
k k k kX x y z . The predictive position 

errors at epoch kt are calculated by (2.14). Thus it can obtain the predictive position errors at each 

epoch, such as 1 2
[ , , , ]

kX X XV V VL .  

ˆ , ,
k k kk

T

k k x y zXV X X V V V                (2.14)   

The standardized residuals at each epoch could be calculated by (2.15) based on the predictive 
position errors (except the first epoch). 
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Then choose the least-square principle through the standardized residuals at each epoch, and the 
way for choosing as follow. 

The standardized residuals of the predictive position errors are not large at epoch kt when the 
values of , ,

k k kx y zV V V% % % are less than 1, that suggests the motion model of the kalman filtering is 
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suitable with the actual motor case, thus the least-square principle which considers the motion 
model errors and the observation model errors as a whole should be chosen, such as (2.10). If the 
values of , ,

k k kx y zV V V% % %are larger than 1, the least-square principle which resists the motion model errors 
should be chosen, such as (2.13). In addition, the least-square principle which resists the motion 

model errors should be chosen when kt is1. 

3  The Measured Data Experimental 

3.1 The Observation Equation 
Driving a vehicle that equipped with a GPS receiver whose sampling interval is 1 second in 

urban areas for 1.5 h. With the extended kalman filtering method [7], using the pseudo-ranges for 
measuring the vehicle’s position and doppler frequencies for measuring the vehicle’s velocity 

[8].Setting the state vector of kalman filtering like , , , , , , , , , ,
T

u ux x x y y y z z z b b  
      ,and the state vector 

is 11 dimensions which is composed of GPS receiver’s three-dimensional positions ,velocities and 
accelerations in ECEF coordinate system, the receiver clock error and clock rate. Then make the 
pseudo- range observation equation expand at the receiver’s approximate position which is 

 ˆˆ ˆ ˆ, , , ux y z b  by using Taylor series method [9], thus get (3.1).  

ˆ ˆ ˆˆ j u j u j u
ju j u j u u u u

j j j

x x y y z z
R b v x y z b

R R R


  
               (3.1) 

In (3.1), ju is the corrected pseudo-range from satellite j to the receiveru , jR is the distance 

from satellite j to the receiver’s approximate position, jv is the corrected pseudo-range error, 

( , , )u u ux y z   is the receiver 's position correction; ub is the receive clock error correction. 
To measure the vehicle’s velocity, take the derivative of (3.1) with respect to the time, then get 

(3.2). 
ˆ ˆ ˆ
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                     (3.2) 

According to (3.1) and (3.2), the observed equation becomes (3.3). 
V AX L          (3.3) 

In (3.3), A is the observation matrix, L is the constant vector, V is the residual vector which 
can be ignored. 
3.2 State Equation 

This paper uses acceleration model as motion model of the kalman filtering, and the state vector 

is , , , , , , , , , ,
T

u ux x x y y y z z z b b  
      , thus the state equation is 
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3.3  The Result of The Experiment 
Use the positioning trajectory which is calculated through the high-precision weighted 

least-square pseudo-range positioning method as the receiver’s reference- trajectory. The 
high-precision weighted least-square pseudo-range positioning is based on the real-time satellite 
altitude angle, and adjusts the weight of the satellite’s data for calculating the receiver’s position, 
reduces the problem satellites’ weights and improves healthy satellites’ weights, finally improves 
the accuracy of positioning [10].      

Take the receiver’s observations to be filtered through the traditional kalman filtering and the 
new kalman filtering which can resist the motion model error. Then make the two filtering results 
compare with the reference-trajectory, the comparison results of xy directions are shown in figure 1, 
figure 2, the positioning errors of xy directions are shown in figure 3, figure 4.   
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Fig 1  Trajectory of traditional KF                  Fig 1  Trajectory of new KF	
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Fig 3 xy direction error of traditional KF              Fig 4 xy direction error of new KF 
Table 1  The average of positioning errors  

  x    y   z   
Traditional KF  0.558 -3.556 -3.471 

New KF  -0.230 0.617 0.236 
Table 2  The variance of positioning errors 

 x   y   z   
Traditional KF 402.411 7678.278 3869.949 

New KF 34.959 88.873 33.883 

4 Experimental Results Analysis  

Analysis figure 1 to figure 4, the positioning accuracy of the new kalman filtering method 
resisting motion model errors is higher than the traditional kalman filtering method’s, and the new 
method can resist motion model errors to a great extent, then make an accurate navigation and 
positioning. But the trajectory of the traditional kalman filtering method has so many divergences 
that its positioning errors are larger, it cannot be used in dynamic positioning if the motion model is 
larger different from the vehicle’s actual motor case. 

Analysis table 1 to table 2, the positioning errors’ average of the new kalman filtering method 
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resisting motion model errors is dm level, and positioning errors’ variance is smaller. But the 
positioning errors’ mean value of the tradition kalman filtering method is more than 3m, and its 
variance is larger.   

As shown in figure 1 and figure 2, the vehicle trajectory is very complex, real motion model 
contains uniform motion, uniformly accelerated motion, variable accelerated motion, turning 
motion, sudden stopping and starting motion, etc, so it is difficult to estimate accurately. And this 
experiment uses uniformly accelerated motion as the motion model, thus it must cause large motion 
model errors in the complex real motion scene that the traditional kalman filtering cannot make an 
accurate positioning, however the new kalman filtering method proposed in this paper can make an 
accurate positioning.  

As shown in figure 3 and figure 4, there are many diverging results by using the traditional 
kalman filtering method and some positioning errors are larger than 100m. Though there is no 
diverging result by using the new kalman filtering method, positioning error of 50m still appears 
and even one is larger than 100m. That is because the results of the kalman filtering are affected by 
motion model errors and observation model errors at the same time [11]. And the kalman filtering 
method this paper proposed can resist the motion model errors effectively that there is no diverging 
result, but large positioning error appears if the observation model error is large. And the 
experiment is conducted in the urban area so that the observation model error is large when the 
multipath effect that caused by the obstacles such as tall buildings is serious. Therefore the 
observation model error is large at some epochs.     

5 Summary 

In the experiment of this paper, the vehicle moves in the complex real scene so that the motion 
model of the kalman filtering method may be not suitable for the real motion model. In this case 
some positioning errors of the traditional kalman filtering method are larger than 100m, even some 
diverging results appear. However only a little bit positioning errors of the new kalman filtering 
method reach 50m level at the same case and the 50m positioning errors are due to the observation 
model error. But overall, the new kalman filtering method can track the vehicle’s real trajectory 
accurately, and it can make an accurate navigation and positioning while the satellite observation 
condition is fine.  
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