
A test data generation method based on the symbolic execution of the
dangerous path

Meng Yongdang
China Satellite Maritime Tracking and Control Department, Jiangyin, 214431, China

Keywords: Dangerous path; symbolic execution; constraint solving; test

Abstract. In this paper, the traditional high fuzzing blindness, code coverage is low, low efficiency
and other shortcomings of the test case generation process a study by introducing symbolic
execution techniques proposed test case generation method based on symbolic execution of the
dangerous path, the method focuses on the dangerous path to the target program, the program
generates the corresponding test cases dangerous path, effectively improve the efficiency and
relevance of test case generation.

Introduction

Fuzzing software vulnerability detection areas most widely used method by providing
malformed input data to the target program and monitor the health of the target program in the form
of vulnerability. Fuzzing process is the most important test case generation process, the traditional
fuzzy test generate test cases usually random variation source input, although this method is very
simple, but its high blindness, generate test cases are mostly not cause program exception, so the
efficiency of traditional fuzzing generally low. Traditional fuzzing these shortcomings, many
researchers have conducted many studies, the most typical way is to use technology to generate
fuzzing symbolic execution of test cases, but these tools often have symbolic execution path
explosion problem.

This paper studies a typical problem with traditional fuzzing and the path of symbolic execution
explosion problem, test case generation method based on symbolic execution of the dangerous path.
First, by generating a mixed node selection algorithm to traverse the path of danger based on the
generated object program path, and then dangerous path to the target proceedings symbolic
execution, generate test cases. This method effectively improve the test case generation targeted
improved fuzzing code coverage, increased fuzzing efficiency.

Node selection algorithm to generate a mixed path traversing the risk-based

Path generation algorithm to traverse the dangerous mix node selects the path based on a node
after a visit to the left subtree of the left subtree by constraints be inverted to obtain the right subtree
constraints. Each visited node, save the path prefix of the node, so in the future path of the search
path can use these prefix matching path prefix, just find the path to the destination node to node,
and then combined with the path prefix, generate a new path, without the need to search from the
beginning to generate path, which can effectively reduce the generated path overhead. In addition,
during the route selection for the left subtree have already searched and searched no right subtree of
a node, the minimum depth preference node, its right subtree depth-first search, generate a path.
The specific steps of the algorithm performed are as follows:

(A). Using the breadth-first traversal algorithm program control flow graph to the nodes in the
graph is sequentially stored in the queue, all nodes are not marked as search condition.

(B). The first path from the root to generate and record the corresponding path constraints, and
the non-leaf node marks on the path to the left subtree searched, not the right subtree search status,
and save the path for each visited path node prefix. Determine whether the nodes on the path are
unsafe function call or write memory block of code in a row where, if put in the path to join the list
of dangerous path.

(C) if the queue is empty, traversal has completed, the end of the search; if the queue is not

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 536

empty, the head of the queue began to search, find the front of the queue with the same depth as the
head of the queue node and the status of the same node, starting from these nodes , depth-first
search method to search for them right subtree, create a new path segment. Each node on the path
prefix to save the newly created route segments, change the node path segment these newly
generated on the state of the left subtree and the right subtree search has not the status of the search,
then those path segments and their respective paths prefix splicing together to form a new path and
record path constraints, and determine whether there is a node on the path unsafe function call or
write memory block of code in a row where, if put in the path to join the list of dangerous path.
Finally, all of these child nodes front of the queue have been searched node from the team.

(D). Repeating steps (c).
Description algorithm flow shown in Figure 1, where the first generation search path a, the

second search path generation b, to generate a third search path c1 and c2; last search generation
path d1, d2, d3, d4.

 1

3

98

2

5

11

4

1 0

6 7

131 2 1 4 15

1

8

2

4

1

3

8

2

4 6

12

1

3

8

2

54

1 0

6 7

1 2 14

1

3

98

2

5

11

4

1 0

6 7

1312 1 4 1 5

第1次搜索 第2次搜索

第3次搜索 第4次搜索

a a b

a c1 b c 2 a c1d1 b d4d2 d3 c2

Figure 1. Execution node selection algorithm to generate a mixed sample traverse dangerous path

based

Dangerous path test case generation method based on symbolic execution

Test case generation method performed based on first use of the symbol dangerous path
generation algorithm to traverse the dangerous mix node selects the path based on the generation of
hazardous path, and then the dangerous path symbolic execution, and ultimately generate test cases.
In the course of proceedings dangerous path to the target symbol to generate test cases executed, the
first input of the target program, symbolic, and then use the target program Valgrind dynamic binary
instrumentation analysis, monitoring communication process symbol value in this process
collecting constraint dangerous path. Finally, the path constraint to solve dangerous path, and
generates the corresponding test cases based on solution results.

Shown in Figure 2, for each dangerous path, first obtain symbolic execution process dangerous
path based on its instructions, instruction parsing, and symbol recognition operand instruction judge
whether signed variable, symbol recognition mainly through inquiry variable table symbolically
achieved symbolic variable table is created at the start of symbolic execution, and in the process of
symbolic execution to update and maintain. If the variable is in the symbol table you can not find
any symbolic variables, directly on the virtual instruction execution, and parse the next instruction;
otherwise requires instruction symbolic execution, the first instruction is converted to an
intermediate language code form, then the intermediate language code dynamic stub; in the course
of dynamic instrumentation for analysis of symbolic variables related to maintenance, the new
symbol symbolic variables to variable table, and according to the existing instruction type variables
corresponding symbol in the symbol table variables update operation for unused variables will be

537

deleted; stub dynamic analysis when the instruction is the end of the basic instruction block,
according to the jump condition generates the appropriate path constraints, and has a virtual stub
instruction execution. Finally, after calling instruction symbol dangerous code block, the output
path dangerous path set of constraints. After generating the path constraints, the final means of STP
constraint solver to solve them, to generate test cases.

获取指令进
行指令解析

是否涉及符号变量

符号识别

VEX中间语言

危险路径

符
号
变
量
表

动态插桩分析

虚
拟
执
行

路径约束生成

是否符号执行结束

输出危险路径
的路径约束

是

否

否

是

Dangerous path

Get instructions and
start parsing

Symbol Recognition

Involving
symbolic variables

VEX intermediate
language

Dynamic
instrumentation analysis

Generating path
constraint

Symbolic execution
is finished

Dangerous path
output path constraint

Symbol
variable

table

Virtual
Execution

No

Yes

Yes

No

Figure 2. Based on the dangerous path of symbolic execution process

Experiment and Analysis

In order to verify the efficiency of the test case generation method proposed in this paper, this
paper proposes a method to generate test cases to achieve a vulnerability detection tool SW_Fuzz,
then were using SPIKEfile, peach, Fuzzgrind SW_Fuzz four and vulnerability detection tool xpdf
software vulnerability detection. SPIKEfile randomly generated test data based on the target
software file formats; peach test case generation using two ways, one is randomly generated test
data based on the target file format software, or use a small number of data to fill a certain
instructive to generate specific data area test cases; Second, random input or modify the template
using the data segment to modify the template given input has some enlightening, and then generate
test cases. Fuzzgrind using symbolic execution techniques to generate test cases, but it uses a
depth-first traversal target program execution state space approach to generate test cases. Xpdf uses
four tools to compare test code coverage test results are shown in Table 1 and Figure 3.

Table 1. Coverage comparing the test results
 the
number of
cases
test tools

200 400 600 800 1000

SPIKEfile 32634 38423 39794 40449 40903
peach 44097 53023 58351 61098 62087
Fuzzgrind 49672 67098 75803 79024 81245
SW_Fuzz 53186 72103 82520 89574 93278

The test results can be seen SW_Fuzz code coverage was significantly higher than the other three
instruments, and its growth rate is also higher than the other three tools. Using four tools xpdf
vulnerability detection test results shown in Table 2.

538

Figure 3. Code coverage growth comparison chart

Table 2. The results contrast detection Vulnerability
project SPIKEfile peach Fuzzgrind SW_Fuzz

number of generated test
cases

1200 1200 1200 1200

Time of test 1.3h 1.4h 6.1h 7.6h
number of basic block

coverage
58497 72983 95644 134138

number of code blocks
covering dangerous

368 504 866 1249

number of anomalies found 8 16 11 15
number of vulnerabilities

discovered
0 0 1 2

proportion of loopholes and
exceptions

0% 0% 9.1% 13.3%

As can be seen from the test results, when generating the same number of test cases, the number
of basic blocks and code blocks dangerous SW_Fuzz coverage and the number of exceptions and
loopholes found significantly more than the other three tools, and the ratio of loopholes and
exceptions also higher than the other three tools. From the results above have a higher code
coverage and test case generation efficiency test case generation method based on symbolic
execution dangerous path.

Summary

In this paper fuzzy test method is based on the problem of vulnerability detection software
launched a study, we propose a hybrid generating node selection algorithm based on traversing
dangerous path, and use it to generate dangerous path, and then presents a danger sign on the path
of execution test case generation methods to improve the efficiency of generation of test cases. The
next step will be focused on symbolic execution time and space to bring the issue to continue to
increase the cost of research.

Reference

[1] C. Cadar, D. Dunbar, D. Engler. KLEE: Unassisted and automatic generation of high-coverage
tests for complex systems programs[C]. Proceedings of the 8th USENIX conference on Operating
systems design and implementation. Berkeley, CA, USA, 2008, 209-224.

[2] C. Cristian, G. Vijay, M.P. Peter, et.al. EXE: Automatically generating inputs of death[C]. CCS
2006: 13th ACM Conference on Computer and ommunications Security, Alexandria, VA,
Unitedstates, 2006, 322-335.

[3] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit testing engine for c. In
ESEC/FSE-13:Proceedings of the 10th European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Foundations of software engineering[C], New

539

York, USA.2005.

[4] P. Godefroid, M. Levin, D. Molnar.Automated Whitebox Fuzz Testing [EB/OL]. [2014-10-22].
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf.

540

