

Parallel Community Detection on Massive Graphs

Bing Tian1,2
1China Coal Technology Engineering Group Chongqing Research Institute, Chongqing 400039,

China;
2State Key Laboratory of Gas Disaster Emergency Information Technology, Chongqing 400039,

China.

tb_ccteg@163.com

Keywords: community detection, modularity, parallel computing

Abstract. Community detection groups a network into node sets according to their connections. It is
an effective way to understanding and analyzing graph-structured data, such as social networks,
collaboration networks, and bioinformatic networks. With the flourishing development of social
network applications, it has become more desirable to explore graphs from a community-level view.
However, based on sequential algorithms, most existing community detection methods are not
suitable for massive graphs. In this paper, we propose a Parallel Community Detection approach,
named ParCoDe. Just like the native sequential algorithm, it uses “community modularity” as the
metric. The detecting process starts from each single node and performs in a bottom-up way. In order
to improve its performance, we propose an approximate solution to accelerate the speed of detection
with little loss of accuracy. We have implemented ParCoDe on Giraph. Comprehensive experiments
on both real and synthetic datasets demonstrate that ParCoDe is of well scalability and is efficient for
community detection.

Introduction

Community detection is a kind of topology analysis approach by dividing a network into node
groups according to the connections among them. The main goal of community detection is to make
nodes of the same group densely connected, while connections between groups are sparse [1]. It is an
effective way to understanding and analyzing graph-structured data. In social networks, community
detection can be used to find people with same interests and make advertisements more personalized
[2]. For collaboration networks, with the help of community detection, it is much easier to reveal
collaboration patterns in further complex analysis [3]. In bioinformatics, a promising use of
community detection is to predict the unknown functions of genes and proteins [4]. Recently,
prosperous social network applications make it more desirable to explore graphs from a
community-level view. Taking Twitter which has more than 200M users [5], and Facebook which has
more than 500M users [6], as examples, communities are more tractable than various users at such
scale.

Existing approaches on community detection can be mainly classified as partitioning methods,
clustering methods, spectral methods, and modularity-based methods [1]. However, all these methods
are based on sequential algorithms. Just like most clustering algorithms, community detection is
computationally expensive sometimes NP-hard. Since detecting communities on a single machines
could easily run out the computational resources, it is challenging to find communities on massive
graphs. Recently, several parallel community detection approaches have been proposed based on
MapReduce [7] programming model [8, 9, 10]. But, as it is an iterative process, BSP [11]
programming model are more suitable for graphs for the consideration of extra cost. Therefore, in this
paper, we propose a Parallel Community Detection approach (ParCoDe) based on BSP programming
model. The main contributions can be summarized as follows:

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 570

(1) Based on the classical CNM (Clauset-Newman-Moore) algorithm, we propose a parallel
community detection algorithm with adjustments on modularity updating and community
merging;

(2) In order to improve the performance of ParCoDe, we introduce an approximate approach to
accelerate its efficiency with little accuracy penalty;

(3) We conduct exhaustive experiments on both real and synthetic datasets and demonstrate that
our approach is of well scalability and efficiency.

The rest of this paper is summarized as follows: we first introduce several basic definitions in
Preliminaries section; ParCoDe is detailed in the following section; then it is empirically studied in
Experimental Evaluation section; Related Work section is a survey of existing community detection
approaches; the paper is concluded by Conclusion section.

Preliminaries

In this section, we introduce several basic definitions including modularity, CNM algorithm and
BSP programming model.

Modularity and CNM Algorithm. Modularity is first proposed by Newman [12]. It is a major
quality metric for community detection. High modularity values correspond to good community
detection results. Specifically, the modularity Q of a community detection result is calculated as:

i

2
iii)a(eQ ,

where iie denotes the fraction of edges that connect nodes in community i and j , ia denotes the

fraction of edges incident to nodes in community i . Since detecting communities with maximum
modularity is an NP-hard problem, CNM algorithm is a greedy solution [13]. It maintains a matrix of

ijΔQ , which is the modularity increment of merging community i and j . Then the overall

community detection process repeatedly selects the largest ijΔQ and after merging, updates each

jkΔQ by:

.kjik

jkik
jk a2aΔQ

;ΔQΔQ
ΔQ

jik

jik

nottoconnectediscommunityif

andtoconnectediscommunityif

,

, ,

where ia denotes the fraction of degrees incident to community i . The algorithm terminates when all

jkΔQ s are negative.

BSP Programming Model. BSP is short for Bulk Synchronous Parallel [14]. It consists of three
components: concurrent computation, communication and barrier synchronization. These three
operations are iteratively performed in one round called superstep. The model is well-suited for
distributed-memory computing. A popular implementation of this model is Pregel [11], which is
proposed by Google. It is a node centric programming framework and well-designed for iterative
applications. There are also many open-source Pregel-like platforms, such as Apache Hama, Apache
Giraph, and etc. In this paper, we choose to implement ParCoDe on Giraph.

The Parallel Community Detection Approach (ParCoDe)

In this section, we present the algorithm of parallel community detection which is an
approximation approach. Suppose that each node is initialized and contained two fields: ia and ijΔQ .

It can be easily achieved in Pregel-like platforms. Hence we omit the details of initialization and
mainly focus on the selecting and updating operations.

The Algorithms. The community selection algorithm is presented in Algorithm 1. It is used to
select the communities with maximal modularity increment to be merged. Algorithm 2 is used to
merge the selected communities and update all the modularity value held by each node. The two
algorithms run alternatively. Obviously, the overall cost of selection and update is four supersteps. In

571

the native CNM algorithm, each time it merges only two communities. Thus, (n - 1) rounds of
iteration are required. To further optimize its performance, we propose a simple but effective
approximation approach.
Algorithm 1. Community Selection of ParCoDe on node v
// masterNode is a specific node of G;
// DeltaQMessage is a triple of (Ci, Cj, deltaQ);
SuperStep 0:
1. search all the maximal ijΔQ and assign it to maxDeltaQ;

2. sendMessage (masterNode, new DeltaQMessage(maxDeltaQ));
3. voteToHalt();
SuperStep 1:
4. if (v = masterNode)
5. find the maximal maxDeltaQ and the corresponding node set Vmax;
6. end if
7. for each (node u in G)
8. sendMessage (u, new DeltaQMessage(Vmax));
9. end for
10. voteToHalt();

Algorithm 2. Modularity Update of ParCoDe on node v
// CMessage is a set of nodes (u1, u2, …, uk)
SuperStep 2:
1. if (v in Vmax)
2. select the node with smaller id as mergedNode;
3. sendMessage (mergedNode, new CMessage(Cv));
4. sendMessage (mergedNode, new DeltaQMessage(v));
5. else
6. if (v is connected to u, u’Vmax)
7. vu'vuvu ΔQΔQ Q ;

8. else
9. '- ua2aΔQ Q vvuvu ;

10. end if
11. end if
12. au = au + au’;
13. voteToHalt();
SuperStep 3:
14. add all received nodes to v;
15. voteToHalt();

An Approximation approach. The main idea of our approximation approach is to select more
than two communities to be merged. For 0 , communities with ijΔQ satisfies

 |}max{-| ijij QΔQ are selected. Such an approximation approach may lead to a penalty of

accuracy. But as demonstrated in our algorithm, it shows that with an appropriate , the accuracy
penalty could be neglected.

572

Experimental Evaluation

In this section, we evaluate our algorithm on both real and synthetic datasets. Details on the
datasets are presented in Table 1. Our machine cluster consists of one master and ten slaves. Each
machine runs the Ubuntu Linux 12.04 LTS and is equipped with a memory size of 16G, disk storage
of 500G and AMD Opteron 4180 2.6GHz CPU.

Table 1 Details of Datasets
Dataset Nodes Edges Description
Twitter 42M 1202M Follow-Follower relationships on Twitter.
uk-2002 18M 298M web pages of .uk domain

RMat 50M 250M synthetic graph generated using R-MAT algorithm

Accuracy on varying . We shows how parameter affects the accuracy of ParCoDe compared
with the native approach. As demonstrated in Figure 1, it shows that with larger , the accuracy of
ParCoDe decreased. By our observation, should be chosen in the interval [0.1, 0.15]. As a default
value, is set to be 0.125.

Figure 1. Accuracy of approximation approach as varies

Figure 2. Speed ratio of ParCoDe as the number of workers grows

Scalability. We demonstrate the scalability of ParCoDe in Figure 2. It shows the performance of
parallel community detection with the number of works raising from 2 to 10. We notice that for the
native ParCoDe, the runtime is decreased sharply as the number of machines increased from 2 to 6.
As the number of workers continually increased, the improvement increases slightly. As to the
approximation approach, the scalability is obviously better.

573

References

[1] Fortunato, Santo. "Community detection in graphs." Physics Reports 486.3 (2010): 75-174.

[2] Lancichinetti, Andrea, et al. "Characterizing the community structure of complex networks."
PloS one 5.8 (2010): e11976.

[3] Gleiser, Pablo M., and Leon Danon. "Community structure in jazz." Advances in complex systems
6.04 (2003): 565-573.

[4] Gulbahce, Natali, and Sune Lehmann. "The art of community detection." BioEssays 30.10 (2008):
934-938.

[5] Korula, Nitish, and Silvio Lattanzi. "An efficient reconciliation algorithm for social networks."
Proceedings of the VLDB Endowment 7.5 (2014): 377-388.

[6] Hongladarom, Soraj. "Personal identity and the self in the online and offline world." Minds and
Machines 21.4 (2011): 533-548.

[7] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data processing on large clusters."
Communications of the ACM 51.1 (2008): 107-113.

[8] Moon S, Lee J -G, Kang M. Scalable community detection from networks by computing edge
betweenness on MapReduce//Proceedings of the 2014 International Conference on Big Data and
Smart Computing. Bangkok, Thailand, 2014:145-148.

[9] Staudt C L, Meyerhenke H. Engineering parallel algorithm for community detection in massive
networks. IEEE transactions on Parallel and Distributed Systems, 2015, IEEE Early Access
Article:1-14.

[10] Chen W -Y, Song Y, Bai H, Lin C, Chang Y. Parallel spectral clustering in distributed systems.
IEEE transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 568-586.

[11] Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data. ACM, 2010.

[12] Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical
Review E, 2004, 69(2): 026113.

[13] Clauset A, Newman M E J, Moore C. Finding community structure in very large networks.
Physical review E, 2004, 70(6):066111.

[14] Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM,
Volume 33 Issue 8, Aug. 1990.

574

