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Abstract. In this paper, the vibro-acoustic response of functionally graded materials (FGM) plates 
subjected to thermal environment are investigated analytically. The governing equations of the 
FGM plate subjected to thermal environment are derived based on the classic plate theory through 
Hamilton’s principle. The sound radiation of the FGM plate is calculated with Rayleigh integral. It 
is found that a dramatic discrepancy will occur if temperature dependent material properties are not 
taken into account. The temperature rise also has a significant effect on the vibro-acoustic response 
of the FGM plates. 

1. Introduction 

Functionally graded materials (FGM) are microscopically inhomogeneous composites in which 
material properties vary continuously and smoothly from one surface to another. Possessing a 
number of advantages such as eliminating interface problems and mitigating thermal stress 
concentrations leads to a wider application of FGMs in areas such as aircraft, space vehicles, 
nuclear plants [1]. Plate is one of the most widely used structural components in industrial 
applications. Sound radiation from plate structures is a practical engineering problem that has been 
studied extensively. However, only few works can be found in the literature focused on the sound 
radiation characteristics of FGM plates [2, 3]. In addition, the FGM structures are always used in 
extreme thermal environment, and thermal environment may change the stiffness and dynamic 
response of the FGM structures. Therefore, it’s significant to consider the thermal effects when 
dealing with the sound radiation of FGM plates in thermal environment.  

The early literature focused on the structure dynamic characteristics under thermal environment 
can date back to 1950s [4], and in recent years, more and more attention has been paid to this 
problem. Jeyaraj et al. [5] presented a numerical simulation study on the vibration and acoustic 
response characteristics of a multilayered viscoelastic sandwich plate in a thermal environment. 
Geng et al. [6] investigated the dynamic and acoustic responses of a simply supported rectangular 
plate in thermal environments. Li and Yu [7] studied the vibration and acoustic responses of the 
sandwich panels in a high temperature environment based on the piecewise low order shear 
deformation theory. More recently, Du et al.[8] carried out an investigation on the dynamic 
characteristics of a laminated plate under temperature gradient, and it is found that the initial 
thermal deformation as well as the thermal stress have to be considered together in simulation of the 
dynamical response for thermal structure. 

 This paper presents an analytical investigation on the vibro-acoustic response of FGM plates in 
thermal environment. The governing equations of the FGM plate subjected to thermal environment 
are derived based on the classic plate theory through Hamilton’s principle, and the acoustic 
response of the FGM plate is obtained with the use of the Rayleigh integral. Accuracy of the results 
is examined by comparing the obtained results of the present formulation with that available in the 
literature. Finally, some parametric studies are conducted to investigate the acoustic characteristics 
of FGM plates in thermal environment. 
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2. Theory and formulation 

2.1 Effective properties of FGM plate 

Consider a rectangular FGM plate of length a, width b and uniform thickness h. The FGM plate 
is made of a mixture of a metal and a ceramic, and the material properties of FGM plate are 
assumed to vary smoothly and continuously through the thickness from the ceramic surface to metal 
surface. The effective material properties can be defined by the Voigt model, according to which  
the effective material properties P(z) such as Young’s modulus E, density ρ, Poisson’s ratio ν, 
thermal conductivity λ, and thermal expansion α are expressed in terms of the material properties 
and volume fractions of constituents [9] 

c c( ) m mP z PV P V                     (1) 
where Pm and Pc denote the specific material properties of the metallic and ceramic constituents, 
respectively, and Vm and Vc represent the volume fractions of the metallic and ceramic constituents, 
respectively. By applying the power law distribution, the volume fractions of ceramic and metal are 
assumed as  

c( / 0.5) , 1 ( 0.5 0.5 )N
c mV z h V V h z h                   (2) 

where N is a non-negative real number and called the power law index.  
The temperature dependent material properties are considered and the corresponding properties 

are given by [9]   
1 2 3

0 1 1 2 3( ) ( 1 )P T P P T PT PT PT
                   (3) 

where T is the temperature in Kelvin 0 ,T T T    with T0 the initial uniform temperature T0=300 
K (where the plate is assumed to be stress free), and T the temperature change, P0, P−1, P1, P2, 
and P3 are the temperature coefficients which are unique to the constituent materials. In this paper, 
it is assumed that the Young’s moduli E, Poisson’s ratio ν, thermal expansion coefficient α of the 
FGM plate are temperature dependent, whereas mass density ρ and thermal conductivity λ are 
independent of the temperature. 

It is assumed that no heat generation source exists within the plate, and the temperature variation 
occurs in the thickness direction only and one-dimensional temperature field is considered to be 
constant in the xy- plane. the temperature distribution along the thickness can be obtained by 
solving the following steady-state heat transfer equation through the thickness of the plate [9]    
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This equation is solved by imposing the boundary condition of at / 2tT T z h   and 
at / 2,bT T z h    then the solution of Eq.(4) can be written as [9]  
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and the temperature change is defined as .t bT TT     

2.2 Governing equations 

According to the classic plate theory, the displacement field at any point of the plate can be 
written as [10] 

0 0, 0 0, 0( , , , ) ( , , ) , ( , , , ) ( , , ) , ( , , , ) ( , , )x yu x y z t u x y t zw v x y z t v x y t zw w x y z t w x y t          (6) 
where ( , , )u v w  are the displacement components along the ( x-, y-, z-) coordinates, respectively,  

0 0 0( , , )u v w are the displacement components of the middle plane along the ( x-, y-, z-) coordinates, 
respectively. The nonzero linear strains associated with the displacements are  

0, 0,0, 0, 0 0, ,, 0, , 2xx x yx y y xy x yx yy xyw wu z v z v u wz              (7) 
where , andxx yy xy    are the strain components. The linear constitutive relations are 

  21 22 611 12 6, ,y yx x x y xy xyc c c c c                  (8) 
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where cij are the elastic coefficient which are given by
 

11 22 12 2
2 2

1 66, , 0./ (1 ) / (1 ) / 1 )5 (E v vc c c c EcE v v         
According to the Hamilton’s principle, the dynamic equations of the FGM plate can be derived 

by 
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where δ is the variation operator, T is the kinetic energy of the system , U is the potential energy of 
the system, V1 is the potential energy done by the external load q, and V2 is the potential energy 
induced by the thermal effect . The δU, δT, δV1 and δV2 can be expressed as 
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Where 
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Substituting Eq.(10) into Eq. (9), and collecting the 0u , 0v ,and 0w , then the following 
equations can be obtained 
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where (I0, I1, I2) are the stress resultants defined by 
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In this paper, only the simply supported boundary conditions are considered, and the state 
variables satisfying the simply supported boundary conditions are assumed as the following form  
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By substituting Eq.(14) into Eq.(12), the governing equations of FGM plates in thermal 
environment can be derived. If the external load q is known, and then the displacements of the plate 
can be obtained with the use of the governing equations. 

2.3 Sound radiation power 

The radiated sound power can be obtained by integrating the acoustic intensity over the surface of 
the plate [11] 

   *0.5Re ( ) ( )s
S

W w p dS  r r        (15) 

where Re and superscript * denote the real part and the complex conjugate, respectively, ( )p r is the 
complex pressure amplitude at location r, ( )sw r is the surface complex velocity. For a plate set in an 
infinite rigid baffle, the acoustic pressure ( )p r  at any field point r can be expressed in terms of 
surface complex velocity according to Rayleigh integral [11].The radiated sound power is usually 

written in the form of sound power level in decibel, which is defined by 

  010log( / )SPL W W             (16) 

with 0W is the reference power and 12
0 1 10 W.W     
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3. Results and discussions 

We first validate the formulation in this paper. The example is sound radiation from a rectangular 
Aluminum plate, which is taken from Geng et al. [6]. The material properties are the same as that in 
Geng et al. [6]. Table 1 shows the first five natural frequencies of the plate subjected to temperature 
rise of 45 C.T    The comparison of the results of the sound radiation power of the plate obtained 
by the present formulation and Geng et al. [6] is shown in Figure 1. As can be seen from Table 1 
and Figure 1, the results obtained from the present formulation and the model of Geng et al. [6] are 
in good agreement, which validates the present formulation in this paper.  

Tab. 1 The first five natural frequencies of the plate with thermal load of 45 C.T    

Methods 
Natural frequencies 

（1,1） （2,1） （1,2） （3,1） （2,2） 

Present 100.9 645.4 1007.6 1414.7 1465.3 

Geng et al. [8] 100.9 646.4 1009.8 1418.6 1469.5 

 

Fig. 1 Sound radiation power of the plate with thermal load of 45 C.T     

 
Table 2 Temperature dependent material coefficients for ceramics and metals[9] 

Material Properties P0 P-1 P1 P2 P3 

SUS304 E (Pa) 201.04×109 0 3.079×10-4 -6.534×10-7 0 
 υ 0.28 0 0 0 0 
 ρ (kg/m3) 8166 0 0 0 0 
 α (1/K) 12.33×10-6 0 8.086×10-4 0 0 

 λ(W/mK) 12.04 0 0 0 0 
Si3N4 E (Pa) 348.43×109 0 -3.07×10-4 2.160×10-7 -8.946×10-11 

 υ 0.28 0 0 0 0 
 ρ (kg/m3) 2370 0 0 0 0 
 α (1/K) 5.872×10-6 0 9.095×10-4 0 0 
 λ(W/mK) 9.19 0 0 0 0 

 
In the following, the developed formulation is thus deployed to carry out several parametric 

studies to examine the vibration and acoustic response of FGM plates in thermal environments. A 
rectangular Si3N4 / SUS304 FGM plate, simply supported on all edges with dimensions of 0.4 m× 
0.3 m× 0.01 m is considered for the following detailed investigations. A point force of 1 N is 
applied on the corner of the plate (x=0.1 m, y=0.1 m) as the external load. The temperature 
dependent material properties of Si3N4 / SUS304 are given in Table 2. The plate is assumed to be 
vibrating in air. For the sake of convenience, the air density is taken to be ρ0 =1.21 kg/m3, and the 
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speed of sound in the air is taken as c0=343 m/s. In addition, a damping loss factor of 0.01 is taken 
for the following calculations. 

Fig. 2 illustrates the importance of considering the temperature dependent material properties in 
the calculation of sound radiation power of FGM plate in thermal environment. The thermal load 
ΔT =50 K, and ΔT =130 K are considered. As shown in Figure 2, there is no considerable difference 
between the results of the sound radiation power with and without considering the temperature 
dependent material properties when the temperature rise is ΔT =50 K, however, the discrepancy of 
that is distinct when the temperature rise approaches ΔT =130 K. It can be seen from Figure 2 that 
the peaks of sound power level shift to lower frequency range when considering the temperature 
dependent material properties, which indicates that the natural frequencies of the FGM plates will 
be overestimated when the temperature dependent material properties are not taken into account. 
This is because that the temperature rise not only changes the pre-stress of the FGM plate, but also 
changes the material properties of the plate. When the temperature rise is small, the change of the 
material properties due to the temperature rise is not considerable; however, this factor cannot be 
neglected when the FGM plate subjected to an extreme temperature rise. 

 
Fig. 2 Sound radiation power of the FGM plate: effect of considering the temperature dependent 

material properties. 

 

Fig. 3 Sound radiation power of the FGM plate: the effect of temperature rise. 

Fig. 3 presents the effect of the temperature rise on sound radiation of FGM plates. The 
temperature change of ΔT =0 K, ΔT =50 K and ΔT =130 K are considered. As shown in Fig. 3, the 
sound power level of FGM plate subjected to different temperature rise share a same tendency 
through the frequency band, however, it is observed that the corresponding peaks of the sound 
power level shift towards to lower frequency domain when the temperature rise increase. This is 
due to the fact that the corresponding natural frequencies decrease with the increase of temperature 
rise. The temperature rise not only softens the pre-stress of the FGM plate, but also decrease the 
Young’s modulus, which result into a decrease of the natural frequency. 
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4. Conclusion 

The vibro-acoustic characteristics of functionally graded materials plates in thermal environment 
are presented in this paper. The classic plate theory is obtained to derive the governing equations of 
the FGM plate in thermal environment, and a good agreement has been achieved when compare the 
results of the present formulation with that available in the literature. The following conclusions can 
be made. The temperature dependent material properties have a significant importance on the 
vibro-acoustic response of the FGM plates in thermal environment. The natural frequencies would 
be overestimated when the temperature dependent material properties are not considered. The 
temperature change play an important role in the vibro-acoustic response of FGM plate, and the the 
corresponding peaks of the sound power level shift towards to lower frequency domain when the 
temperature rise increase.  
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