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Abstract. In computer vision, object recognition is still a challenge. In this paper, a new method 
based on data field is proposed for image object classification with color histograms and diffusion 
distances. Among them, the topological potential is used to select the optimal parameters. The 
experimental results show that the proposed method has better accuracy and shorter run time than 
four common kernels.  It not only overcomes the drawbacks of the existing parameter selection 
method, but also coincident with Vapnik’s theory, which theoretically guarantees the generalization 
of learning machines. 

1. Introduction 

Recognition is a class of classical problem in computer vision, on which many specialized tasks 
are based. In ICCV 2013, the papers about recognition accounted for nearly 30%. Being a valuable 
technology, object recognition has been deeply infiltrated the production life of all walks of life, like 
Remote sensing, robots, autonomous cares, android eyes, image panoramas, etc. 

Image Classification has been a challenge in computer vision over multiple decades. Generally, 
the various recognition problems related to a definite application can be solved and implemented in 
different ways. Total approaches can be divided into the following categories: based on CAD-like 
object models, appearance-based methods, feature-based methods [1, 2], genetic algorithms[3] and 
other approaches. In this paper, we use color histogram[4] as an image representation; then, because 
of support vector machine(SVM)[5]’s high generalization performance, we choose it as the 
classification model, which can successfully avoids the curse of dimensionality. Among them, we use 
the data field function and topology potential for custom kernel and parameter selecting. A series of 
experiments shows that the proposed approach does much better than common kernels. 

This paper follows the automatically identification process of the best kernel and its parameter 
settings. Section 2 provides a brief background introduction of data field. Section 3 describes how to 
construct data field kernel and selecting its parameters. Section 4 explores this method’s advantages 
and limitations, and proposed improvements in the future. Section 5 gives the paper‘s summary. 

2. Method 

2.1 Color Histogram and Diffuse Distance 
In computer vision, the color histogram[6][6][10] represents the colors’ distribution of an image. It 

is a kind of simple and fast low-level representation for digital image. The color histogram is 
produced by discretization of the image’s colors into several bins and counting the number of image 
pixels in each bin. The spatial features may be lost in computation process, but it guarantees the full 
conversion and rotational invariance of image. 

Diffusion distance[7] is a novel cross-class distance based on histogram descriptors, which 
understand the difference between histograms by a heat diffusion process in physics. Diffusion 
distance is not only robust to any distortions such as image deformation, light changes and noise that 
usually causes problems for HBLDS, but also have a linear time complexity. 

If a m-dimensional histogram is denoted by	 , then 	 ,   represents two different 
histograms. The diffusion distance is defined as	 , ∑ | | , where 

, , ↓ , 1, … , . The notation ′ ↓ ′	 denotes half size 
down-sampling.  is the number of pyramid layers and  is the constant standard deviation of 
Gaussian pyramid. Owing to the low computation load and good performance, paradigm  is used to 
compute ∙ . 
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2.2 Data Field 
Inspired by modern field theory, data field[8] introduces the interaction between material particles 

and the description way of field into abstract data space. Let , , … ,   be a data set with n 

objects in space , where , , … , , 1,2, … , , then each object is equivalent to a 
particle with some quality in a p-dimensional space. In whole space, there is a data field around and 
any object with field receives the associative action of other objects. In principle, any function 
morphology which meets above conditions can be used to define data field. Reference to the 
gravitational field and nuclear field, it can give the function morphology of quasi gravity field (1) and 
quasi nuclear field (2), as below: 

‖ ‖
.                                                                                                                      (1) 

‖ ‖

.                                                                                                                (2) 
Where, 0 represents the strength of field source, which can be review as the quality of data 

object; ∈ 0,∞ , named impact factor, is used to control the interaction range between objects; and 
∈  is the distance index. 
In physics, the potential is defined as the work done by field force. It means that the work done by 

moving a unit particle from one place to reference within field.  So, the potential of data field is 
defined as follows, which is usually a single value function of spatial position. If the data set 

, , … ,     contains n objects in the space R   , then the potential value of the data field 

at any place x  in space can be expressed as: 

φ
∑
∑

.                                                                                  (3) 

where   is the quasi gravitational potential value of x,  corresponds to a 
monodromic potential value generated by quasi nuclear field; 0 is the mass of object , which 
is normalized, i.e., ∑ 1. Last but not the least, the value of topology potential has nothing to 
do with the existence of particle at this position. 
2.3Kernel Method 

The theory of kernel function[9] has a very long history. Mercer’s theorem[10] can be traced back 
to 1909.The research of reproducing kernel Hilbert space (RKHS)[11] was emerged in 1940s. As 
early as 1964, Aizermann and other[12] introduced it into the field of machine learning in the study 
on potential function method. Until 1990s, it was used in support vector machine by Boser, Guyon 
and Vapnik[5] successfully, whose importance began to be taken seriously. 

In the beginning of SVM research, people more concerned about the design algorithm based on 
kernel functions. Later, it was recognized that one of keys to improve the performance of SVM is to 
design an appropriate kernel for a given problem.  In theory, a kernel is often transformed from 
classic kernels based on the basic property of kernel function. In the principle of structural risk 
minimization, the SVM classifier design process may take two steps. Frist of all, it can choose an 
appropriate subset of functions that it has the best classification ability for problem; then, it chose a 
discriminant function from this subset to make the experiment risk minimization.  

3. Experiments and Results 

3.1 Function Morphology Selecting 
The SVM’s design framework is relatively simple, whose performance mainly depends on kernels 

and their parameters. The kernel function implicitly determines the form of mapping function, which 
is more important to determine the corresponding feature space of original data [13].  

In order to find the more appropriate kernel, we did a series of experiments to evaluate the general 
performances of different kernels. For SVM with ten different kernels, 1000 random tests were tested 
respectively, which included four common kernel functions (linear kernel, polynomial kernel, RBF 
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3.3. Parameter Selecting 
The mainstream methods for SVM’s parameter selecting include two categories: grid search and 

heuristic algorithms. The former can get the global optimal solution, but it costs too much in a wide 
range; the latter mainly refers to the genetic algorithms[15] and particle swarm optimization 
algorithms[16], etc. They can find the optimal solution without traversing the whole parameter space, 
but they are easy to fall into local minima. 

In this study, we first use the particle swarm algorithm to shrink the parameters’ ranges; then gird 
search is used to refine selecting; finally, we calculated these points’ topology potential. The optimal 
parameters’ value is the setting with maximum potential value. To avoid falling into local extreme 
points, the position variation operation is introduced after updating the velocity and position, which 
makes partials move with variation in solution space and update particle extreme and global extreme 
gradually until the iteration conditions is met. The best position which all particles passed is taken as 
the initial search range of fine gird search.    

Unfortunately, there are several settings can reach the top CV accuracy. In most cases, it uses 
random or the first setting for instead. In my view, each setting is viewed as a particle with certain 
performance, its surrounding exists a performance field. Any object in the field is subject to the 
combined action of other objects; the particle with larger potential value has a higher performance, 
whereas the potential value of particle with low performance is small. So, the topology potential can 
be used to choose the optimal setting, with  cost. Reference to definition of topology potential, 
the potential value nearby particles with high performance or particle-intensive areas is larger, so the 
performances of particles nearby the largest topology potential are higher, i.e. the topology potential 
can be used to reflect the appearance possibility of the best parameter setting. Vividly, the top 
topology potential must be occurred neared the center position of these settings, which away from 
individual outliers and the OSH is not too simple or complex. In this way, there will be no 
“owe-fitting” or “over-fitting”, which ensure the generalization performance as far as possible. 
3.4. Results on Simulation Dataset 

The Caltech 101[17, 18] is a data set of digital images, which is intended to facilitate the 
researchers of computer vision, especially in  recognition, classification, and categorization. It 
contains a total of 9146 images, split between 101 distinct objects and an additional background 
category. To simulate real-word classification problem, the 29 colored original categories are merged 
into seven. Table 3 illustrates the relationship between them. 

Taking the instance with random state 2.040387102000000e+09 for example, the specific 
parameter selection processes unfold as follows. After PSO roughing, the initial parameter range was 
refined to ∈ 0,1 , ∈ 1,6 . In grid fine selection, the step length of parameters is taken as 0.01. A 
total of 6130 settings reach the highest CV. Figure 4 shows the topological potential of these settings, 
where the red star marks the setting C =0.31, S=4.58 with top potential value. 

Table 3. New categories generated Caltech 101 
New Size Original category in Caltech101 
Fish 57 sea_horse 
Reptile 201 crocodile, crocodile_head, hawksbill 
Bird 992 Airplanes, flamingo, flamingo_head, ibis 
Mammal 1431 Faces, Faces_easy, Leopards, cougar_body, dalmation, gerenuk, 

hedgehog, kangaroo, okapi, platypus 
Invertebrate 84 scorpion 
vegetation 285 Bonsai, strawberry, sunflower, water_lilly 
abiotic 533 grand_piano, headphone, lamp, pagoda, stapler, watch 

4. DISSCUSSION   

In this study, I have shown that using data field function and topology potential to construct 
kernels and select its parameter. The experiments demonstrate that the proposed kernels can do much 
better than common kernels for a more generic image sets. Besides, the topology potential based on 
method give a rational physics explanation for parameter selecting. This method not only has a low 
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time complexity, but also without other prior knowledge and extra parameters. The last but not the 
least is that the selected parameter is in line with the structure risk theory. This method can be used in 
many processes of automation production like image retrieval, detection, segmentation, action tasks 
etc. The data field kernel could be tried in many other applications, if the specific industry 
background can be integrated, it may get better results. 

5. Summary 

     This research found that viewing data field as a kernel and using topological potential for 
parameter selecting has better accuracy and shorter run time than four common kernels. Besides, it is 
very coincident with the Vapnik‘s theory, which guarantees the generalization of learning machines 
theoretically. This method could be further research with the specific background and applications. 
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