

Automatic Functional Testing of Unity 3D Game on Android Platform

Huixian HU 1,a, Lu LU 2,b
1,2 Department of Computer Science and Engineering, South China University of Technology,

Guangzhou 510006, China
aKatherinehhx@foxmail.com, b lul@scut.edu.cn

Keywords: Android, Functional testing, Unity, Software testing, Game engine

Abstract. As Android games plays a big role in humans’ daily amuse activity, the rapid growth of
mobile games has led to the constant development and update which have resulted to the heavy loan
of testing. Unity is one of the most popular game engines that establish a more effective rendering of
game scene. In this paper, we put forward a feasible solution to execute a whole procedure of
automatic functional testing of Unity game on Android platform. The solution is exploring the
coordinate systems of the Android platform and Unity to address the component-based testing with
less manual cost.

Introduction

A fast-growing demand of mobile games for Android devices caters to the need of recreation. To
efficiently develop mobile games is bound to propose supplement of game engine designed for the
creation and development of video games [1]. The continual development and update of mobile
Android games will lead to the heavy loan of software testing. Nevertheless, mobile game testing is
distinct from traditional mobile application testing since the tested objects are usually end products in
virtue of the corporations between Android SDK and 3D game engine [2].

This paper designs an auxiliary tool in the initial stage of the Android game functional testing
developed With Unity. The following paper is organized like this: we demonstrate the latest research
on the Android testing theory and the mobile game development in the next part. In the third part, we
will present the automatic functional testing on the mobile game constructed by the Unity Android
platform. Later in the fourth part, a simulation will be conducted to show that the solution put forward
in the previous part is valid. After that, the paper will discuss on the result of the experiment raised
before and testify if the testing method can serve as a complementary tool in the functional testing in
the fifth part. In the end of the paper, we will conclude our work on the issue and raise new problem in
the future research.

Background

To address the challenge of the automatic functional testing on Android game developed with the
help of Unity engine, we should review on the working mechanism of creating a game in this
circumstance.

Game engine’s rendering module is critical to the immersive experience brought form the
three-dimensional graphics of a mobile game [3]. It provides powerful and abundant support of post
processing effects and particle materials. To create vivid interaction in animation, it as well extends
physical and mathematic logic related models which visibly make it easier and more efficient to
develop a game that behaves physically realistic.

To minimize the coupling degree among distinct threads in the Java program, encapsulation can be
a superb practice in the design of testing method. We introduce testing JAR file under the same
directory of the game Android project, which can accept the required parameters and protect the
encapsulation.

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 1136

Test automation is achieved through composite methods of the following aspects [4]: test suits
generation, awareness of context [5], recording and replaying. GUI testing is being widely used in the
mobile application testing [6]. Generating test cases before testing is most time consuming and
generally demands great manual work without test automation. Hence, it comes first to ponder over
the ways and means of adaption of Android games by Unity. What’s more, the testing technique must
be sensible and smart of what’s going on while the game runs.

Unity Android Game Testing Technique

To accomplish the automation of software functional testing, there are three inevitable steps to
accomplish : Record the test scripts, execute the recorded scripts and replay the test procedures. To
realize the purpose of capturing the operation on both the controls of Android and Unity3D game
engine, the recording module are supposed to figure out what controls are triggered and trace the
operating sequence while the testers are exploring the game applications.

Fig. 1. Workflows of test method

The testing procedure lists and executes in Figure 1.

To minimize the influence brought by the testing modules, the capture module is bound to the test
object by adding scripts to the test broadcaster to Android, which records click in the Unity. One
thing to note is that Unity has its own screen space [8], in other words, coordinate system. The
purpose of designing a broadcaster is acting as a listener to monitor the states of the controls or
components which are added to the game project.

After the click information which track the coordinates of position represented in screen space in
Unity is collected by the test monitor, it’s encapsulated together into the Android project exported by
the engine. When running the Unity game on a smart phone or virtual device, search the path of the

0) Add scripts to the test broadcaster listener in Android to record clicks in the Unity and monitor the states
of the controls or components added to the game project.

1) Launch Monkey Runner [7] prepared to record testing procedure.
2) Run the Unity game on a smart phone or virtual device, execute testing cases according to the functional

requirements.
3) Search the path of the file system and get the files giving the coordinates of button components in screen

space.
4) Map the Unity coordinates into Android screen coordinates by executing location transformation to

extract operations related to controls of Unity3D.
5) Interpret and analyze the testing result into readable testing report

1137

file system and get the click.txt file and button.txt file. The button.txt file gives the coordinates of
button components in screen space, too.

As the Monkey Runner is recording the touch event of the tested application, the mapping function
is responsible for interpreting the attached file of delivered click position in Unity. Track after the
position of the finger touching the screen of smartphone or the mouse interacting with Android virtual
device. Collect both two kinds of coordinates for the latter mapping processing. The construction of
mapping coordinates starts with the following definition:

The coordinates of Unity defined as U, and A for Android. Each pair of coordinates in Unity is
presented as (P, Q) where P = {p1, p2, p3, … ， pn} and Q = {q1, q2, q3, … ， qn}. Similarly, let
Android coordinates presented as (X, Y) where X = {x1, x2, x3, … ， xn} and Y = {y1, y2, y3, … ， yn}.
After matrix projection, pn and qn should be in form with xn and yn. That is,

xn = a11pn + a12qn + a13. (1)
yn = a21pn + a22qn + a23. (2)

Where a11, a12, a13, a21, a22, a23 separately represents constant numbers to project Unity

coordinates into Android coordinates.
Consult into the attach file to compare with the different coordinates system, use the matrix

projection [9] to map the Unity space screen into the Android screen coordinates. We can transform
Eq.1 and Eq.2 into the form of matrix as below:

.
 		 	 	 (3)

To compute a11, a12, a13, a21, a22, a23 we make use of both the two known coordinates’ data pairs.

Let matrix X denote the unknown vector, we have A = X∙U. That is,

.
 (4)

Where (xn, yn) and (pn, qn) separately represents coordinates in Android screen and Unity screen.

According to definition of inversion of matrix computing we have A∙inv(U) = X.
After applying the results of the fourth step, we get the transformed coordinates of Unity controls in

Android screen. By locating the click operations, if the current position hit any of the target controls
in Unity engine, a reprocessing can be carried to interpret the coordinates into controls in Unity.
Hence, we can judge if the current position interest with the controls of Unity. By use of automation
android test tools, testing engineers can analyse the screen shots together with the modified files
recording the Unity controls to revels errors in Unity game engine.

Experiment and Result

In this section, we conduct a simulated experiment to verify if the automatic functional testing
method on Android is feasible. The tested game is a simplified demo developed under Unity game
engine. The main controls in this game are the four buttons controlling the trail of the small ball. The
four upper buttons are standard button controls in Android platform. To visualize the testing
processes, texts in black display the controls being clicked.

According to the test result, the testing platform can serve as supplementary module to
MonkeyRunner to complete an automatic workflow on Android game applications developed under
Unity3D engine. Table 1 lists the coordinates of test cases in the tested application.

1138

Tab. 1 Coordinates of Unity Buttons

Column Matrix A Matrix U Matrix X
Test case 1

Test case 2

Test case 3

To ease the heavy burden of test engineers, the automatic test solution proposed in this paper
optimized the existing test procedure by interpreting the numeric coordinates into readable text as
labels of Unity controls. The broadcaster of Unity controls can insert the operation to Android
application concurrently with the recording thread of MonkeyRunner. The optimized test script also
includes the instructions that will automatic run in the execution of test scripts. The following is one
of the original test cases recorded.

By applying the projection method proposed in the previous section, the test cases recorded by
MonkeyRunner can be modified and clearly indicate the components of Unity. In this example, test
cases figure out all the buttons related to Unity, which reveal errors introduced by the game engine.

After the improvement to the recorded script, the execution module sends simulated instructions to
the virtual devices based on the sequence of recorded operations. The snapshots of the execution
result are shown as Figure 2.

UnityButton Button Up

WAIT {'seconds' 3.0 }

TOUCH {'x' 571 'y' 808 'type' 'downAndUp' }

TOUCH {'x' 135 'y' 1162 'type' 'downAndUp' }

TOUCH {'x' 108 'y' 757 'type' 'downAndUp' }

TOUCH {'x' 189 'y' 549 'type' 'downAndUp' }

TOUCH {'x' 623 'y' 533 'type' 'downAndUp' }

TOUCH {'x' 632 'y' 1080 'type' 'downAndUp' }

TOUCH {'x' 519 'y' 1178 'type' 'downAndUp' }

UnityButton Button Right

There is still a long way to go, improve the efficiency, protect the security of game engine and
intelligently analyze the testing result report and locate the bug.

Conclusion

This paper firstly introduces the current situations of the development of Android mobiles games with
the help of Unity3D. To find out a workable method of the target problems, we focus on the message
delivery formats of Android and the invoking of components in Unity3D. Based on the mechanism of
the three aspects of game architecture, namely, data, logic and rendering, we tentatively suggest a
flow of processing the automatic method of revealing the errors occurs while the game runs. We then
conducted a simulation experiment to verify the effect of the automatic functional testing and
analyzed the result of generating reasonable test cases and the revealed bugs.

The main contributions of this paper can be summarized as below:
 Put forward an innovative research issue of the automatic testing on Android game based on

Unity3D platform.
 Collating of references of architecture of games and mechanisms adopted in the

implementations of mobile games developed with game engine.

1139

 Proposed a feasible solution addressing the challenge of automating the functional testing of
mobile games, utilizing the graph theory flexibly.

Meanwhile, the coupling degree of the path finding should be reduced so that the sequences of
scene can be greatly decreased. What’s more, the closeness to practice is not satisfied since we didn’t
simulate the situation where the game runs concurrently, that is, whether and how the performance of
the mobile devices affect the functional behavior are unknown. Another existing problem to be
addressed is the reusability of the test suit. The future research on the issue of mobile game testing
can be study in depth in the several directions:
 Learn from other mature framework applied by Robotium or UnityTestTools to propose a

feasible open framework of automatic testing on mobile game functions.
 Combine the relevant content in the field of AI (Artificial Intelligent) to generate the method

of training the testing script to control the traverse path while executing the testing tasks.
 Work on the testing task allocation algorithm in depth to dispatch loan on different devices

running the game scripts.
∙ Improve the reusability of the test suit and cut down the cost of maintenance.

The intrinsically intention is to facilitate the social development by reducing the manual input in
the manufacturing of various industries. We are doing our utmost to enhance the closeness of theory
and practice. With test infrastructures, one symptom of high maintenance costs is the establishment of
a "tools team" to maintain the infrastructure.

Acknowledgements

Project supported by the National Nature Science Foundation of China (No. 61370103), Guangdong
Province Science Application Major Fund (No. 2015B010107001), Guangzhou Produce & Research
Fund (201508010057) and the Open Fund of State Key Laboratory of Wuhan University Software
Engineering.

References

[1] Anderson, Eike Falk, et al. "The case for research in game engine architecture." Proceedings of
the 2008 Conference on Future Play: Research, Play, Share. ACM, 2008.

[2] Schwabe G, Göth C. Mobile Learning with a Mobile Game: Design and Motivational Effects.
Journal of Computer Assisted Learning, 2005, 21(3):204-216.

[3] Kurome H, Noda S, Hayasaka S, et al. Rendering Geographic Datasets with 3D Game Engine –
Dealing with Compatibility Issues. Japanese Journal of Ophthalmology, 1993, 37(2):143-7.

[4] Muccini, Henry, Antonio Di Francesco, and Patrizio Esposito. "Software testing of mobile
applications: Challenges and future research directions." Automation of Software Test (AST),
2012 7th International Workshop on. IEEE, 2012.

[5] Schilit, Bill, Norman Adams, and Roy Want. "Context-aware computing applications." Mobile
Computing Systems and Applications, 1994. WMCSA 1994. First Workshop on. IEEE, 1994.

[6] Amalfitano, Domenico, Anna Rita Fasolino, and Porfirio Tramontana. "A gui crawling-based
technique for android mobile application testing." Software Testing, Verification and Validation
Workshops (ICSTW), 2011 IEEE Fourth International Conference on. IEEE, 2011.

[7] Information on http://developer.android.com/guide/developing/tools/monkeyrunner

[8] Blackman, Sue. Beginning 3D Game Development with Unity: All-in-one, multi-platform game
development. Apress, 2011.

[9] Gentle, James E. Matrix Transformations and Factorizations. Matrix Algebra: Theory,
Computations, and Applications in Statistics. Springer. 2007. ISBN 9780387708737.

1140

