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Abstract. Cognitive radio (CR) technology provides a new approach to solve the problem of 
wireless spectrum resource scarcity by allowing secondary users (SUs) to access the licensed 
spectrum in case that SUs do not interfere primary user (PU). One of the most challenging tasks in 
CR is spectrum sensing. This paper concentrates on the state change of PU’s disappearance and 
analyzes the agility of spectrum sensing via evaluating its sensing time. Some expressions for 
sensing time are deduced. Based on these expressions, this paper also investigates how to optimize 
the sensing agility by choosing an appropriate detection period. Simulation results are provided to 
illustrate the validity of agility analysis and agility optimization in this paper. 

Introduction 
Despite being one of the most critical resources in wireless communications, the majority of 

available spectrum bands is allocated in a fixed way and not fully utilized according to recent 
reports [1] [2] [3] [4]. Cognitive radio is an effective approach to improve spectrum efficiency by 
enabling SU to reuse the spectrum band of PU [5]. In order to avoid interfering with PU, SU should 
sense whether the band is being used by PU [6]. 

Sensing accuracy, usually measured in terms of false alarm probability and missed detection 
probability, is a crucial index when evaluating the performance of spectrum sensing. Besides, the 
sensing agility is also of vital importance [7]. This index reflects the ability of SU to timely perceive 
state changes of PU on spectrum band, and ensures SU to take agile actions of either vacating or 
occupying the band once PU emerges or disappears, respectively. In [8], sensing agility is modelled 
by the number of detections required by SU to correctly determine PU’s presence after PU emerges. 
If SU consumes small number of detections to perceive the emergence of PU, it could rapidly stop 
reusing the band and consequently do little interference to PU, resulting in high sensing agility. On 
the contrary, large number of detection leads to low sensing agility. In [9], the authors show that 
agility can be increased by allowing the SUs operating in the same band to cooperate and exploiting 
the inherent asymmetry in secondary networks.  

This paper digs into the agility of spectrum sensing in cognitive radio. Different from previous 
research, it concentrates on PU’s disappearance instead of PU’s emergence. Sensing agility is 
thereby modelled by the sensing time required by SU to eventually find out PU’s absence after PU 
disappears. This type of sensing agility has a significant impact as well. If SU could perceive the 
disappearance of PU within shorter time, more reuse opportunity can be grasped and higher 
spectrum efficiency can be achieved. Moreover, note that merely reducing the number of detections 
does not certainly do good to sensing agility. That is because overall sensing time depends not only 
on the number of detections but also on the period of each detection, and smaller detection number 
may be resulted from larger detection period. In this paper, detection period are taken into 
consideration and sensing agility is optimized by choosing an appropriate detection period. 
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Energy detection 
Assumed that energy detection method is used in each detection for spectrum sensing. SU 

determines whether PU exists or not with the observed energy V  of its received signal ( )y k , 
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where N  denotes the number of samples used in energy detection. 
Comparing V  with the decision threshold λ , whether the spectrum is occupied by PU 

(hypothesis 1H ) or not (hypothesis 0H ) can be expressed as 
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Without loss of generality, the channel noise is assumed to be additive white Gaussian noise 
(AWGN) with zero mean and unit variance, and PU signal is binary phase shift keying (BPSK) 
modulated. Then the false alarm probability fP  and the missed detection probability mP  are 
given by [10] 
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where γ  is the received signal to noise ratio (SNR), 
2

21( )
2

t

x
Q x e dt

π

∞ −
= ∫  is the Q-function. 

Generally, the time required by calculation and decision process can be neglected because it is 
much shorter than that of sampling process, so the time of each detection period approximately 
equals to its sampling time. If the sampling frequency is sf , the detection period dT  will be 

/d sT N f=                             (5) 
Given sampling frequency sf , detection period dT  depends on sampling number N . 

Therefore, this paper mainly focuses on the sampling number to analyze sensing agility. 

Sensing agility analysis 
As described above, sensing agility reflects the ability of SU to sense the state changes of PU on 

license band, and can be measured by sensing time. This paper concentrates on the stage change 
that PU disappears and licensed band is no longer occupied by PU. Therefore, the sensing time here 
ranges from the moment when PU quits the licensed band to the moment when the idle band is 
perceived by SU. 

Once PU’s state changes from presence to absence, SU may not immediately get this information 
via energy detection as false alarm errors inevitably exist. Fortunately, the detection is periodically 
performed, and SU will eventually perceive the change after several times of detections. Assume the 
number of detections that SU consumes to perceive PU’s disappearance is L , the sensing time can 
be expressed as 

/S d sT L T L N f= ⋅ = ⋅                    (6) 

Note that false alarm error randomly happens, so how many detections are required is uncertain, 
that is, L  is a random variable. Consequently, major attention should be paid on its statistical 
mean. 
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Considering the case L i= , in which SU determines the presence of PU in previous 1i −  
detections and finds out PU’s absence in the thi detection. The probability of this case is 

{ } ( )1 1i
f fP L i P P−= = ⋅ −                             (7) 

Then the statistical mean of L  can be deduced as 
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So the average sensing time is 
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Substituting (3) into (9), the expression can be rewritten as 
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Sensing agility optimization 

As shown in(6), the sensing agility is the product of detection period dT  and detection 
number L . From the former point of view, smaller sample number N is required according to (6), 
while from the latter point of view, larger sample number N is needed according to (3) and (4). So 
there may exists an optimal sample number optN , which could make the average sensing time 
achieve minimum value and maximize the sensing agility. 

Without loss of generality, considering the constant missed detection probability criterion that 
mP  in each detection is confined to be a constant α , the optimization problem can be expressed as 

follows 

/

1
2

sN fMin
NQ
N

λ

 
  
 −  −     

                (11) 

( )
( )

1
: 1

2 1 2
m

N
Subject to P Q

N
λ γ

α
γ

 − +
 = − =
 + 

                  (12) 

Reforming of the optimization constraint(12), decision threshold λ  is given by 
( )1(1 ) 2 (1 2 ) 1N N Qλ γ γ α−= + + + −                   (13) 

Substituting (13) into the (11), the optimization problem with regard to N  is shown below 
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Given a certain sample number N , the average sensing time { }SE T  can be calculated 
according to (14). Conducting numerical searching within the range of N , an optimal sample 
number optN  that minimizes { }SE T  can be obtained. That is to say, in practical spectrum sensing 
scenarios, if using optN  samples in each detection, the average sensing time will be shortest, and 
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the sensing agility is optimized correspondingly. 

Simulation and analysis 
This section provides Monte Carlo simulations and theoretical values to verify the correctness of 

conclusions deduced above. Simulation parameters are set as follows: 20 / secsf Msamples= , 
0.5%α = . 
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Fig. 1. Sensing agility versus sample number under different SNRs 

Fig. 1 depicts the average sensing time { }dE T  versus sample number N  under different 
SNRs (γ= -11、-10、-9dB), where “theoretical” curves are calculated by the theoretical results of 
this paper and “actual” curves are obtained from Monte Carlo simulations. It can be seen from Fig. 
1, for each SNR, the actual curve is basically consistent with its corresponding theoretical curve. 
This phenomenon proves the correctness of our derivations. Furthermore, the trends of curves under 
different SNRs are similar with increasing N . They firstly decline, then reach the lowest point, and 
finally firstly rise, which demonstrates the existence of optN . Note that the deduced optimal sample 
number according to (15) is also plotted in this figure with the filled markers. Since these markers 
fall in accordance with the lowest points of corresponding Monte Carlo curves, the effectiveness of 
sensing agility optimization is examined.  

Conclusions 
This paper digs into the state change of PU’s disappearance, and analyzes a new type of sensing 

agility. Evaluated in terms of average sensing time, the expression for sensing agility is deduced. 
Under the criterion of constant missed detection probability, the issue of optimizing sensing agility 
is also discussed, and a numerical method is provided to obtain the optimal sample number. If this 
optimal number is adopted in each detection, the agility of spectrum sensing can be minimized, 
resulting in higher spectrum efficiency. 
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