
Formal Description of Pipes-filters Achitecture Style

Yunsai Zhai 1, a, Lichen Zhang 2, b

1Faculty of Computer Science and Technology, Guangdong University of Technology, Guangzhou,
510090, China

2 Faculty of Computer Science and Technology, Guangdong University of Technology, Guangzhou,
510090, China

aemail: zys_yunsai@163.com, bemail: zhanglichen1962@163.com

Keywords: Formal Method; Z Language; Formalization of Filters; Formalization of Pipelines;
Formalization of Pipes-filters

Abstract. In order to solve some nonstandard and imprecise problems of non-formal methods, the
formalization method based on strict mathematical is put forward software architecture of
formalization not only can clearly describe the software architecture style, and makes design of
architecture easy to understand and implement. In this paper, using the Z specification language
describes the formalization of the pipes-filters architecture style that the pipes-filters model is
oriented to data flow.

Introduction

From the recent exploration of software architecture, software architecture is currently largely
still based on non-formal research.The non-formal graphs and texts are still the common
architecture description in software development, which directly affects the reusability of the
system and the description of the interaction between the components and their system. In order to
solve this problem, the formal methods is introduced. The formal method[1] is a tool to solve the
theoretical study of Computer Science and Software engineering practice related issues, and it is
built on rigorous mathematical methods and arguments. Set theory, algebra theory, mathematical
logic, structural type theory, programming language theory and other mathematical theories have
formed the oretical basis of formal methods. Formal method, as the most rigorous method in current
software development, is an important means to improve the security and reliability of software
systems. The application of formal methods requires the support of formal specification language.

Z Language

Z language[2][3] is a kind of typical formal specification language. It is based on first order
predicate logic and set theory as the main mathematical foundation and is using the state machine as

∧ ∨a model. Z language is using the standard logical operators (, ,¬, etc.) and set operators
∈ ∪(, ,∩, etc.) and their conventional definition.

Z language provides the structure of a framework (“schema”) and is used to describe a
specification state space and operation. Z protocol language is using this schema structure type to
represent the architecture style, and its expression form is as follows:
schema TypeName{// “TypeName” is a type name

the statement part // defined state variables
the predicate part // describe the relationships between variables

}

The Formalization of Filters

In the pipes-filters system[4] [5], the filters as a component are the basic unit of data processing,
and are used to convert and process data streams. Each filter has an unique identifier

(“Filter_id”). Each filter has an input port (“in_ports”) and an output port, The system through the

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 1216

input port
outputs ne
defined as
“Alphabets
“transtition
input data,
filter set.

In the b
the input p
Current sta
operation o
encapsulat
in the way
schema F

f: Filter
Filter_id
in_ports
alphabe
↔ (STA
states: S
start,cur
instate,o
in_ports
dom(alp
start s∈
∀state1
ps1,ps2
●((state

∧states
// It uses
∧ dom
∧ ∀ i:in
∧ ∀ o:o
curstate
∀p:dom
∀p:dom

}
schema F

 △ Filte
f′=f // T
 ∃ in,ou
●((curst
∧ ∀p:f.
∧ ∀p:f.

}

The Form

In the
transmissio
identity(“P
port). Each

read data s
ew data at t

the collect
s” is define
ns” is defin
 and range

ehavior of t
port is remo
atus of filte
of filter wil
es such a on
of formaliz

Filter{

d: Filter
s,out_ports:
ets: DATAPO
ATE×(DATA
STATE
rstate: STAT
outstate:DA
s∩out_ports
phabets) =in
states
, state2 : ST
:DATAPOR

e1,ps1),(sta
∈state2 sta

s the symbo
(ps1)=in_po
n_ports ●ran
out_ports ●
e f.states∈
m(instate) ●
m(outstate) ●

FilterCompu
er //The sy

The next stat
ut:DATAPO
tate,in), (cu
.in_ports ●
.out_ports ●

malization o

pipes-filter
on and it rep
Pipe_id”), an
h channel ha

stream, afte
the output p
tion of all p
ed as a por
ed as a proc
of value is c

the filters, t
oved; 2. The
er is change
l make som
ne-step ope

zation, and i

 DATAPOR
ORT +→ D
APORT+→

TE
ATAPORT+→
s=
n_p ∪orts ou

TATE
RT+→ seq D

∈te2,ps2))
ates
ol “●” to sep

∧orts dom(
⊆n (ps1(i))

ran (ps2(o)

● ran (instat
● ran(outsta

ute{
△ymbol of "

te of the filt
ORT+→seq

rstate′,out))
●instate(p)=

●outstate′(p)

f Pipelines

rs system,
presents the
nd there is
as a differen

er the data
port. “Filter
ports; “DAT
rt mapping
cessing fun
consisted of

he result of
ese data are
ed; 4. Proce
me input dat
eration. So w
its expressio

RT
DATA transti

seq DATA)

→seq STA

ut_ports

DATA
transitions=

parate quan
 ps2)=out_p
alphabets(i)
⊆)) alphabet

⊆te(p)) f.a
⊆ate(p)) f.al

△ " is used t
ter becomes
DATA
∈) f.transtiti

=in(p)～inst
)=outstate(p

the pipelin
e data outpu
an input po
nt source an

flow is pro
r” is define

TA” is defin
 function a

nction, in wh
f output dat

f a single ste
 processed

essed data is
ta convert in
we can use
on form is a

itions:(STA
))

ATE

∈=>state1

ntifier constr
ports
)
ts(o)

alphabets(p)
lphabets(p)

to cite the fr
s the current

ions
tate′(p)
p)～out(p)

ne as the
ut from one

ort (i.e. the s
nd pool for

ocessed by
ed as the se
ned for the
and is mapp
hich the do
ta; “STATE

ep operation
according t
s generated
nto output d
“Filter” and

as follows:

ATE×(DATA

raint and pr

framework o
t state

connection
e filter to an
source port)
sending and

the internal
et of all filt
system to d
ped to a da
main of def
” is defined

n is that[6]:
to the curren

on the outp
data. The fr
d “FilterCom

APORT+→s

edicate exp

of “Filter”

n is a high
nother. Each
) and an out
d receiving

al program,
ters; “DATA
deal with th

data sequenc
finition is c

d as all the s

 1. Some of
nt state of t

tput port. Th
rame of Filt

ompute” to d

seq DATA))

pression.

hroad to r
h pipeline h
tput port (i.
data messa

the system
APORT” is
he data set;
ce by port;
consisted of
states of the

f the data in
the filter; 3.
he one-step
terCompute
define filter

)

ealize data
as a unique
e., the pool

ages. At any

m
s
;
;
f
e

n
.
p
e
r

a
e
l
y

1217

moment, the pipeline of the two ports have data resides. Any of the two pipelines are different that
identification is different and transmission of the data is also different.

In the behavior of the pipelines, the result of a single step operation is that: it will send certain
data sequences from the source port of data (“source_ port”) to the pool port of data(“sink_port”).
In the process of removing and sending the data, the order and the content of the data still remain
the same, that is, the data in the source port and the pool port is the same. The two filters connected
by a pipeline (“p”) are the source point filter (“source_filter”) and the end filter (“sink_filter”).The
source port of the pipeline is connected to the output port of the source filter, and the pool port of
the pipeline is connected to the input port of the end filter. So we can use “Pipe” and “PipeCompute”
to define pipeline in the way of formalization, and its expression form is as follows:
schema Pipe{

p: Pipe; Pipe_id: Pipe
source_filter, sink_filter: Filter ; source_port, sink_port: PORT
source_data,sink_data: seq DATA
alphabets: P DATA
source_port source_filter.out_ports ∈ ∧ ∈sink_port sink_filter.in_ports
source_filter.alphabets(source_port)=alphabets
sink_filter.alphabets(sink_port)=alphabets
ran(source_data)�p.alphabets∧ ⊆ ran(sink_data) p.alphabets

}
schema PipeCompute{

△ Pipe
p′=p
�deliver:seq DATA | #deliver>0
●source_data=deliver~source_data′∧ sink_data′=sink_data~deliver

}

The Formalization of Pipes-filters

The pipes-filters system is composed of a filter set (“Filter”) and a pipeline set (“Pipe”) where
the filter is used as a component, the pipeline is used as a connection, usually one pipeline connects
two filters. Each filter and each pipeline has a unique identifier, each are not identical. The filter is
an independent entity and not affected by each other. The input port of the pipeline is the output port
of the first filter, the output port of the pipeline is the input port of the second filters. The data after
the first filter processing enters into the pipeline through the source port of pipeline, flowing out
from the pool port of pipeline and finally going into the second filter. The order and contents of data
in this process still remains the same. So we can use “System” to define pipeline in the way of
formalization, and its expression form is as follows:
schema System{

filters: P Filter; pipes: P Pipe
∀f1,f2:filters∣f1≠f2 ●(f1.in_ports∪f1.out_ports)∩(f2.in_ports ∪f2.out_ports)=￠
∀p1,p2:pipes∣p1≠p2
●(p1.source_port∪p1.sink_port)∩(p2.source_port ∪p2.sink_port)=￠
∀ ∃p:pipes ● f1,f2:filters
●p.source_port∈f1.out_ports ∧p.sink_port∈f2.in_ports
∧f1.alphabets(p.source_port)=p.alphabets ∧f2.alphabets(p.sink_port)=p.alphabets

}

Conclusions

The formal methods based on the rigorous mathematical foundation provides a strict and
effective way for the design and analysis of model. It can find inconsistencies, ambiguities and

1218

errors in the earlier, and effectively reduce design errors and improve the feasibility of the system.
The paper uses the formal methods to describe the pipe-filter software architecture and further
explains how to use formal language to describe software architecture. It can be seen that formal
description can give a precise mathematical model, and the implementation of the algorithm can be
described in detail, and the design of software architecture is no longer a non-formal text and
graphics.

Acknowledgment

In this paper, the research was sponsored by the Guangdong Natural Science Foundation under
grant (Project No. 2015A030313490), all support is gratefully acknowledged.

References

[1] Decheng Miao, Libo Feng. Study on the application of formal methods in software engineering
[J]. Journal of Hebei University Of Science and Technology, 2011,32 (6): 575~579.

[2] Tianlong Gu. The formal method of software development [M]. Higher Education Press, 2005

[3] Guangyi Guo. The formalization of Z language and software architecture style [J]. Computer
Technology and Development, 2009,19 (5): 140~142.

[4] Zheng Qin. Software architecture (Third Edition) [M]. Tsinghua University Press, 2015

[5] Yuanyuan Xiao. Application Research on software architecture of pipe-filter [J]. Public Science
and Technology, 2010 (11): 21~22.

[6] Chong Feng. Software architecture theory and practice [M]. People's Posts and
Telecommunications Publishing House, 2004.

1219

