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Abstract. A novel quantum-inspired approximate dynamic programming algorithm (ADP) is 
proposed for solving unit commitment (UC) problems. The quantum computing theory is applied to 
tackle some new issues rising from ADP. In details, the unit states in UC problems are expressed by 
the quantum superposition. Then, the collapsing principle of quantum measurement is applied to 
solve the Bellman equation of ADP speedily. Based on the quantum rotation gate, the pre-decision 
states of the ADP are generated by quantum amplitude amplification technology. In the proposal 
algorithm, the quantum computation balances between state space exploration and exploitation 
automatically. Test cases of UC are performed to verify the feasibility of the proposal approximate 
algorithm for the range of 10 to 100 units with 24-hour with ramp rate constraints. The 
experimental results show that the quantum-inspired ADP algorithm can find the better sub-optimal 
solutions of large scale UC problems within a reasonable time. 

1. Introduction 

Unit commitment (UC) is an important task in the power system operation. A good schedule of 
generating units may save the electric utilities many production costs. The UC problem can be 
formulated as a large-scale, nonlinear, mixed-integer combinatorial optimization problem, but it is 
difficult to obtain the global optimal solution. Though a lot of methods have been used to solve the 
UC problem, such as the priority list (PL) [1], dynamic programming (DP) [2][3], mixed-integer 
programming (MIP) methods [4][5], meta-heuristics [6]-[8], quantum-inspired meta-heuristic 
methods [8]-[10], etc., they still have some flaws. For example, DP method for solving UC is easy 
to encounter the curse of dimensionality problem [2][3]. Fortunately, this problem can be solved by 
the approximate dynamic programming (ADP) method efficiently. Moreover, ADP can gain the 
optimal or better sub-optimal solutions of many engineering problems. To implement ADP, 
generally, the DP algorithm is constructed over a limited set of states. For instance, the priority list 
is used to generate the limited set of unit commitment problem’s states [2], then the ADP is 
implemented on the limited set to solve the UC problem. ADP is implemented using quantum 
amplitude amplification in [11]. Recently, the method of quantum amplitude amplification based on 
Grover iteration was applied to the action selection of the Bellman equation in dynamic 
programming and solve the curse of dimensionality [12]. In [13], this method is also used to solve 
the Bellman equation of reinforcement learning and makes a good tradeoff between exploration and 
exploitation. However, the quantum amplitude amplification based on the quantum rotation gate is 
much easier to implement and combine with combinatorial optimization problems compared with 
the one based on Grover iteration [14]. 

 The most important work of ADP in recent years is the forward iteration ADP algorithm theory 
proposed by Prof. Powell of Princeton University in the year 2013[15]. The forward ADP algorithm 
can overcome the curse of dimensionality. However, there are still some open issues. The main one 
is how to make a balance between exploration and exploitation, which affects the quality of solution 
of ADP significantly. In the case for solving UC problem, the general exploration strategies, such as 
Boltzmann machine [15], epsilon-greedy [15], knowledge gradient and Bayesian method [15], 
R-max [15], etc., could not explore the state space of UC problem effectively [3][15]. Therefore, it 
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is necessary to seek some new exploring strategies for the UC problems specially.  
In this paper, a novel quantum inspired ADP algorithm (QI-ADP) for solving large scale UC 

problems is proposed by using the quantum computing theory to tack some issues in ADP. The unit 
states in UC problems are expressed by the quantum superposition. Then, the collapsing principle of 
quantum measurement is applied to solve the Bellman equation of ADP speedily. The pre-decision 
states of the ADP are generated by quantum amplitude amplification technology. Test cases of UC 
problems which range from 10 to 100 units with 24-hour are performed to verify the feasibility of 
the proposed algorithm. The experimental results show that the quantum-inspired ADP algorithm 
can find the better sub-optimal solutions of large scale UC problems within a reasonable time. It’s 
feasible that using quantum computing theory tackle some new issues rising from ADP.  

2. The Model of UC Problem 

The UC problem is to determents a unit commitment schedule to minimize the total operating 
cost of all generating units, subject to a number of system and unit constraints. 

The objective function of UC problem is given as the following 
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where ui,t presents the state of unit i at hour t (0 when the unit is off, and 1 otherwise). The fuel 
cost function of unit i at hour t is expressed as 
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where Pi,t is the power generation of unit i at hour t. The ai, bi and ci are the cost coefficients of 
unit i. Ci,t is the startup cost and can be described as 
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where Ci,hot is the hot startup cost of unit i, and Ci,cold is the cold startup cost of unit i. Ti,t is the 
continuous online time (+) or offline time (-) of unit i. Ti,off is the minimum down time of unit i. 
Ti,cold is the cold start time of unit i. 

The power balance constraint is given by 
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where PD,t is the system demand at hour t. 
The system spinning reserve is expressed by 
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where Pi,max is the maximum power output of unit i. SR,t is the required spinning reserve at hour t. 
The active power from unit i is limited as 
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where Pi,min and Pi,max are the minimum and maximum power output of unit i. 
  The minimum up/down time constrains are given by 
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where Ti,on is the minimum up time of unit i. Ti,off is the minimum off time of unit i. 
The ramp rate constraints are indicated as below 
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where Pi,up, Pi,start, Pi,down and Pi,shut are the limit of unit i for ramp up, ramp down, startup ramp and 
shutdown. The UC model in this paper is constituted by the above equations ranged from (1) to (9). 

3. The QI-ADP Algorithm for UC Problem 

3.1 State of UC problem and quantum state 
  The state of UC problem is given by (10). The value of ui,t is 0 or 1. Therefore, (10) has 2T×N 

different combination states, which are from
00 0
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
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
. In this paper, the quantum state is 

employed for (10) to express the states of UC problem for the sake of using quantum theory since   
ui,t can be considered as a bit in the traditional information science. 
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In the quantum information science, an information unit (a quantum bit, qubit) is represented by 
a superposition state as 

|  =  |0>  + |1                                                            (11) 
where |0> and |1> correspond to traditional login states 0 and 1. α and β are complex coefficients 

and satisfy 2 2| | | | 1   . But (11) is hard to be expressed and stored in a traditional computer. 

Based on the characteristics of α and β in (11), a vector as (12) can be expressed and stored as 
followed: 
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Then, (10) is expressed by the quantum state as 
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where Qt,N expresses all the unit commitment states of N units at hour t. (13) has 2T×N different 
base states, which are from

| 00 0
T N


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to
|11 1

T N


. Thus, the states of (10) can be quantized by (13). 

3.2 The QI-ADP Algorithm for UC Problem 
According to the ADP algorithm framework in [15], the quantum-inspired ADP algorithm for UC 

problem is described as follows. 
Step0: Initializing. 

(a) Initialize the quantum amplitude matrix (13). 
(b) Initialize the value function

0 0,tV t T  . 

 (c) Initialize the iteration counter n=1 and maximum number of iterations as
0N . 

 (d) Input the model parameters of UC problem. 
 (e) Set pre-decision state 0

nS with the initial states of units. 

Step1: Get the pre-decision state matrix P by quantum observing (13).  
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Step2: do for t=0,1,2,….,T 
 (a) Solve the Bellman equation in (14) by quantum observing to obtain ˆt
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 (b) If t>0, update 1t
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 (c) Get the next pre-decision state 1t
nS  from the t+1 line of matrix P. 

Step3: process the solution of nth iteration. 
 (a) Construct the current solution of nth iteration and store it in matrix M. 
 (b) Construct the current best solution of nth iteration and store it in matrix B. 
 (c) Update (13) using the values of objection function f(M) and f(B). 
 (d) n=n+1. If n

0N  , go to step1. 

Step4: Return the best solution B of UC problem. 
The following will discuss some main issues in the above QI-ADP algorithm. 

  In step1, the form of the pre-decision state matrix P is the same as (10). The quantum observing 
method to construct P is that for a pair of (αi,t,βi,t) in (13), ui,t is 1 if |αi,t |

2<|βi,t |
2, otherwise ui,t is 0. 

After observing each pair (αi,t,βi,t) in (13), the matrix P is constructed. As P represents a schedule of 
UC problem, it must satisfy UC constraints. If P violates the UC constraints, a heuristic method 
[8]-[10] is used to adjust them. 
  In step3, the solution of nth iteration is given by 
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M is a schedule of UC problem. If M violates the UC constraints, the heuristic method [8]-[10] is 
used to adjust them. Let B is the best solution of n-1 iteration with the same formulation as (10). In 
matrix B, the meaning of bi,t is same as ui,t in (16). If f(M)< f(B), the current best solution is updated 
with B=M. 
  In step3, the (13) is updated by the quantum rotation gate. For a pair of (αi,t,βi,t) in (13), the 
updating method is shown as 

, , , ,

, , , ,

cos( ) sin( )

sin( ) cos( )
i t i t i t i t

i t i t i t i t

   
   
       

           

%
%                                            (17) 

where
,i t is the quantum rotation angle corresponding to (αi,t,βi,t). 

,i t can be determined through 

the following adaptive equation 
0(n/ )

, 0
N

i t e                                                                  (18) 

where
0 is the given initial rotation angle.τis the constant coefficient. 

4. Test results 

The proposed algorithm is simulated on a PC with Intel Core2 Quad CPU (2.5GHz), 2GB RAM. 
The algorithm is implemented with Matlab on Windows platform. The data of test cases for UC 
problems are taken from [5]. Six test cases are from 10 up to 100 units with 24 hours with ramp rate 
constraints. Let Pi,up=Pi,down=0.2Pi,max, which means the ramp up and ramp down rate of each unit 
are taken to be 20% of its maximum power output. Let Pi,start=Pi,shut=2Pi,min, which means that the 
startup and shutdown ramp rate of each unit are its double minimum power output. The Outer-Inner 
Approximation approach (OIA), outer approximate (OA) and tighter several-step outer 
approximation (TOA) are very successful deterministic mix-integer mathematical programming 
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methods, and they can obtain high quality solutions for UC problems [5]. The results show in Tab.1. 
                 Tab.1. The comparison of results on six test cases 

Units 
OA[7] 

$ 
TOA[7] 

$ 
OIA[7] 

$ 
QI-ADP 

$ 
10 569,199 569,199 569,199 563,977 
20 1,134,125 1,134,105 1,133,850 1,124,056 
40 2,264,893 2,265,399 2,264,769 2,243,721 
60 3,397,796 3,397,470 3,397,057 3,362,485 
80 4,530,355 4,528,283 4,527,816 4,484,974 

100 5,660,906 5,660,415 5,658,279 5,605,622 

From Tab.1, Comparing results of QI-ADP to the ones of OA, TOA and OIA, the average 
differences are 0.87%, which are very small. The results indicate that QI-ADP can obtain the 
high-quality sub-optimal solutions of test cases with ramp rate constraints.  
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               Fig.1. The comparison of running time of several methods 

Fig.1 illustrates the comparison of running time of QI-ADP, OIA and Quantum-Inspired Binary 
PSO(QBPSO)[10], which identify that the characteristics of running time of QI-ADP and OIA are 
nearly linear, while the characteristic of QBPSO is nonlinear. That’s to say, QI-ADP can solve the 
UC problems efficiently and obtain the high-quality solutions. As a result, it’s feasible using 
quantum computing theory to tackle some new issues rising from ADP itself. 

5. Conclusion 

A novel quantum-inspired ADP algorithm is proposed in this paper. The quantum computation 
theory is used to handle the issues of ADP. The quantum amplitude amplification technology is 
applied to explore the state space of UC problem and automatically makes the balance between 
exploration and exploitation. The Bellman equation is solved efficiently by the quantum observing 
method. The pre-decision states of ADP are generated by the quantum computation theory. The 
results of simulated experiments show that QI-ADP can solve large scale cases of UC problems, and 
can obtain a better sub-optimal solution within a reasonable time. 
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