

A New Method for Control-plane Congestion Control in Chip-scale
Optical Networks

Shi Xu1,a, Renfa Li1, Quanyou Feng2, b , Wenhua Dou1

1Department of Information Science and Engineering, Hunan University, Changsha, 410073, China
2 School of Computer Science, National University of Defense Technology, Changsha, 410073,

China
aemail:xushi9018@aliyun.com, bemail: fengquanyou@nudt.edu.cn

Keywords: Many-core, Optical On-chip Network, Control Congestion

Abstract. Recently, various optical networks have been proposed for chip-scale communication on
large-scale many-core chips, including optical burst-switching (OBS). The overall throughput of
OBS network is dually constrained by congestion and loss in both the data-plane (i.e., burst
contention) and the control-plane (i.e., header packet losses). While previous studies mainly focus
on maximizing data-plane throughput, little work has been done on the control-plane congestion
problem. In chip-scale OBS, massive fine-grained data bursts, stringent transmission delay budget
and moderate network operation frequency have actually constrained the electronic header
processing capability, leading to serious network congestion. This paper proposes a new approach
based on ingress regulation to overcome the control-plane congestion problem. In our scheme,
before being injected, every concurrent packet flow is globally regulated and coordinated so that the
aggregated flows do not exceed the header processing capacity of routing nodes, leading to the
alleviation of control-plane congestion. We use real application traces to evaluate our method.
Simulation results validate that the proposed approach can effectively minimize the control-plane
congestion and improve system performance in terms of transmission delay and burst loss rate.

1. Introduction

In the coming Exascale computing era [1], limited power budget and enormous memory
bandwidth demand are two important challenges for high performance processors design. Base on
the rapid development of silicon photonic devices [2], many optical network technologies have been
used to provide energy-efficient and high throughput chip-scale interconnection network for
manycore system, for example wavelength routing [3], photonic circuit-switching [4], and
chip-scale optical burst switching (OBS) [5]. Among these paradigms, OBS technology combines
the flexibility and maturity of electronic processing with the huge bandwidth potential and
scalability of all-optical switching [6]; it is theoretically a very plausible candidate for the design of
low-power and high-bandwidth manycore interconnection network.

However, in general OBS network, due to the random nature of burst arrivals at core nodes,
control-plane congestion occurs when the short-term arrival rate of headers at a core node exceeds
the maximum rate at which they can be processed. Finite processing capacity of the electronic
header processors thus significantly affect the maximum throughput that can be supported [7]. This
problem gets even worse in chip-scale OBS. Unlike macro OBS networks (e.g., metropolitan OBS
network and the Internet backbone OBS network), 1) chip-scale OBS network is characterized by
massive short bursts (fine-grained control messages, like memory read/write requests) that have
stringent requirements on communication delay; 2) the operating frequency of chip-scale OBS
network is constrained by thermal constraint and limited power budget, and therefore cannot be
very high. All these features definitely intensify the burden and complexity of control-plane
operations, resulting in frequent network congestion and finally limited system throughput.

Although there have been many studies that aim to maximize throughput by resolving contention
and avoiding burst collisions in the OBS data-plane[9], there have been very few studies that
consider the loading and congestion of the control planes. That is because control-plane congestion

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 1290

in general macro OBS network happens infrequently. To date, the pioneer work on this problem is
done by N. Barakat and T. E. Darcie [7] [8]. Using queuing theory, they studied the control-plane
stability constraint in a single core node and proposed some useful guidelines.

In this paper, we focus on chip-scale OBS network and propose a new approach to address the
control-plane congestion problem by flow regulation [13]. Using network calculus[10], our work
first study the worst-case end-to-end communication delay and minimum loss rate for each OBS
header packets flow. And then, we develop a non-linear optimization model to select the optimal
regulator parameters. Simulation results with real application traces show that our approach can
effectively resolve the control-plane congestion and achieve considerable performance
improvements in terms of network delay and burst losses rate.

The paper's outline is as follows. In Section 2, we introduce the basics of network calculus
briefly. We present the worst-case delay bound model and minimum burst loss rate analysis of OBS
traffic flows in Section 3. Based on these models, we formulate our new approach as an
optimization problem and present our optimization method in Section 4. In Section 5, we present
simulation results and discussions. The paper is concluded in Section 6.

2. Background -- Network Calculus

Cruz [11] and Chang [12] have pioneered the study of network calculus [10], which is a
mathematical framework to derive worst case bounds on maximum latency, backlog, and minimum
throughput. Le Boudec and Thiran [10] summarized the results of network calculus and their
applications in Internet and ATM. The authors in [13] proposed a network calculus-based flow
regulation and defined a regulation spectrum as a design instrument for SoC architects to control
QoS.

In network calculus, a flow f is generally an infinite stream of unicast traffic sent from a

source node and flow j is denoted as jf . ()jf t represents the accumulated number of bits

transferred in the time interval[0,]t . To obtain the average and peak characteristics of a flow, traffic

specification[13] is used. With traffic specification, jf is characterized by an arrival curve

() min(,)j j j j jt M p t t     in which jM is the maximum transfer size, jp the peak rate

(j jp ), j the burstiness (j jM ), and j the average (sustainable) rate. We denote it

as (, , ,)j j j j jf M p   .

Network calculus uses the abstraction of service curve to model a network element (node) which
processes traffic flows. A well-formulated service model is the latency-rate function , ()R T R t T   ,

where R is the minimum service rate and T is the maximum processing latency of the node [10].
Notation x x  if 0x  ; 0x  otherwise.

3. Network calculus model for OBS control-plane network

3.1 An OBS core node
Figure 1 illustrates a general architecture of the core node in chip-scale OBS mesh network, in

which the JET [6] signaling protocol is implemented. Data channels are connected to the optical
cross connect and control channels are terminated at the header packet router after O/E conversion.
According JET, header packets are issued out an offset time earlier before their data burst payload.
The header packet router computes the routing Table based on pre-defined protocols (such as,
dimension order routing in optical meshes) and forwards the control packet to the input queue of
corresponding burst scheduler. There is a scheduler for each output link, which runs the LAUC [6]
scheduling algorithm. Before the arrival of data burst, the switch controller configures the optical
cross connect according to the commands issued by the schedulers.

1291

Fig.1. A general architecture of OBS router

Fig.2. Resource sharing due to flow
aggregation

Since transmission of headers and payloads are physically separate, bursts can get lost because of
congestion in the outgoing data-plane wavelength channels, excessive delay in the header packet
routers or failure operation of the LAUC scheduler due to intra-channel burst overlapping [14].
Since our work focuses on control-plane issues, we assume, throughout the paper, there are enough
wavelengths and wavelength convertors in chip-scale OBS so that data-plane congestion due to
channel shortage will not happen. So, our work focuses on studying the impact of excessive delay in
the header packet routers which are caused by finite electronic processing capacity. In this section,
based on network calculus, we derive worst-case delay bounds and minimum burst loss rate model
for each header traffic flow. In the following section, we elaborate our flow regulation method that
addresses the control-plane congestion issues encountered by massive concurrent OBS flows.
3.2 Worst-Case Delay Bounds

 When we apply network calculus to compute the worst-case end-to-end delay bound for an
OBS flow, the basic idea is to transform the original network into a feed-forward network, in which
a tandem of network elements (i.e., buffers and schedulers) provide exclusive services to a single
flow without loops. Then, we can apply the tandem theorem[10] to compute equivalent service
curve of the route path. As can be observed in Figure 1 and Figure 2, header packets are delivered
via shared wavelength channels and buffers; different flows may interfere with each other along the
overlapped route. These aggregated scheduling and interference must be resolved first in order to
derive end-to-end delay bound.

At each router, we identify two types of resource sharing, namely, channel sharing and buffer
sharing. Channel sharing means that multiple flows from different buffers share the same outport
and thus the output link bandwidth. As shown in Figure 2, flows, 1f and 3f , which are from the
West, and South inport, respectively, share the East output link. The switch arbitrates and sends the
two flows to the East outport. Buffer sharing means that an aggregate flow, which are to be split,
share a buffer. As also illustrated in Figure 2, flow {1,2}f shares the buffer at the West inport, which

is an aggregate of two flows, 1f , and 2f , and to be split by the switch to the East, and North
outport, respectively.

Analysis of Link Sharing
Without loss of generality, we consider two flows 1f and 3f share one output link as shown in

Figure 2. We assume that the router performs the weighted round-robin scheduling; the flows are
served according to their configured weight, i for flow if . In each round, for a non-empty buffer
encountered, the router will try to serve up to i bursts before moving to the next buffer. Assume
the service rate of the router is C bursts/cycle per link, the maximum length of a round is

consequently equal to
i

i

C


cycles and the time for flits of flow if to be forwarded within a round

is bounded by i

C

 cycles. The service offered to one flow completely depends on the weight of the

flow. In weighted round-robin scheduling, the worst-case appears when a flow just misses its slot in

1292

the current round. Consequently it will have to wait for its slot at the next round. In the worst case,

flits will have to wait up to
j

j i

C





cycles to be served. Hence the equivalent service curve for 1f can

be derived as

3

1
1

1 3

R R

C




  
 

 


(1)

Analogously, the equivalent service curve for 3f , equals to

1

3
3

1 3

R R

C




  
 

 


 (2)

Analysis of Buffer Sharing
As drawn in Figure 2, an aggregate flow {1,2}f sharing the same input buffer is to be split to

different outports. Flits of {1,2}f are stored in the input buffer and served by the switch of the router

in the FIFO order. The equivalent service curve for an individual flow if depends also on the arrival
curve of its contention flows at the ingress of the buffer. For 1f , the equivalent service curve can be

derived as 1 2(,)
R R    , where (..,..) is a function to compute the equivalent service curve. Thus,

according to [10], we obtain the output arrival curve of 1f as *
1 1 2(,)R      . In the same way,

we can obtain 2f ’s equivalent service curve 2 1(,)
R R    and output arrival curve as

*
2 2 1(,)R      .

We give an example to compute (..,..) . If the router provides a latency-rate service curve [10],
i.e., 0,() () ()R

C Tt t C t T       , and 2f is constrained by an affine arrival curve, i.e.,

2 22 , 2 2() ()b rt t r t b    , then applying Corollary 4.5 in [10], the equivalent service curve for

1f can be computed as:

21 2 . , 2
,

(,) 0
R R

C s C r b
T s

C

s     
 

    (3)

where s is an intermediate argument for computing the least upper delay bound [10].
 Besides these two sharing model, the burst scheduler also provides services to each flow. We
assume that a scheduler is only responsible for the configuration of a single wavelength channel, i.e.,
it works on aggregated outgoing flows. So we may view it as a constant delay element  for each
flow.

Fig.3. A 4x4 OBS mesh network

 Now, based on the service curve for input buffer sharing  , outing channel scheduling 

1293

and burst scheduler  , we can compute the equivalent service curve R of a control-plane router
for OBS flow f as

R         (4)

End-to-end delay bound analysis

To compute worst-case delay bound for a flow of OBS header packets, we first analyze the
service curve of individual router (1...)Ri i n  along the route and then, by applying the tandem
theorem again, we get the equivalent service curve  .

1 2R R Rn      L (5)

For example, Figure 3 shows a 4x4 OBS mesh network, in which dimensional order routing is
used to transfer data between on-chip core clusters and off-chip memory. There are 2 flows, 1f , and

2f . Flow 1f is injected from ingress of edge node (2,0) and leaves at Map03;it traverses a tandem
of routers (2,0) (2,1) (2,2) (2,3) (3,3){ , , , , }R R R R R , loosely denoted as (2,0) (3,3){ }R R ; 2f is injected from ingress

of edge node (2,1) and leaves at Map07;it traverses (2,1) (2,2) (1,2) (0,2){ , , , }R R R R (denoted as

(2,1) (0,2){ }R R); At router (2,1)R , 1f and 2f share the same output link. At router (2,2)R , 1f and 2f

share the same input buffer. We transform the original network into a fee-forward model as shown
in Figure 4.

Fig.4. feed-forward network

Base on the feed-forward network, we get the service curve for 1f as
{(2,0) (3,3)}

1 1

(2,0) (2,1) (2,2) (2,3) (3,3)
1

R R R R R R
f f           (6)

where
1 2

(2,1) 1

1 2

R
f

C

  


    
 

   


and
1

(2,2)
2(,)R

f
          .The service curve for

2f is
{(2,1) (0,2)}

2 2

(2,1) (2,2) (1,2) (0,2)
2

R R R R R
f f         (7)

where
2 1

(2,1) 2

1 2

R
f

C

  


    
 

   


and
2

(2,2)
1(,)R

f
          , thus the delay bound

for 1f and 2f can be derived as {(2,0) (3,3)}

1 1 1(,)RD H    and {(2,1) (0,2)}

2 2 2(,)RD H    , in which

(..,..)H is the function to compute the maximum horizontal distance between the arrival curve and
the service curve.
3.3 Minimum burst losses rate

Due to the random nature of burst arrivals at core nodes, control-plane congestion can occur in
an OBS network when the short-term arrival rate of headers at a core-node exceeds the maximum
rate at which they can be processed. To minimize data loss during these periods, arriving headers
are generally placed in a header queue until they can be processed. The overall delay experienced
by an arriving header at an OBS core node is therefore equal to the sum of its own
header-processing duration and the duration spent waiting in the processing queue. If the cumulated

1294

delay along its path exceeds the header's delay budget as defined by its offset time, the header will
be dropped because of insufficient time for burst scheduling before its burst's arrival, and the optical
burst will get lost. This control-plane loss is different from the commonly studied data-plane loss
that occurs when all of the channels on outgoing links are full. In order to minimize overall
throughput, a practical objective in any OBS network design should be to properly provision the
network such that the number of headers that expire before service is negligible. In this section, we
apply network calculus on the analysis of control-plane losses and derive the minimum burst loss
rate bound for each OBS flow.

Recall that in our assumptions, with enough wavelengths and convertors, the LAUC scheduler
can always find an eligible wavelength channel. The only scenario where a data burst gets lost
happens when the cumulated delay of its header packet violates the JET offset time budget. So the
burst loss rate here is the same as the header packet loss rate. Furthermore, we also assume that the
delay bound in a single flow is the same among packets, because they all take the same route path
and the offset-time is also the same. So, all the network nodes encountered by a header flow can be
deemed to be a delay bounded network element [10] equivalently.

Losses of a delay bounded element in network calculus, can be modeled using the "clipper"
model, i.e., a lossless system proceeded by a "clipper", as shown in Figure 5. The clipper drops
some data when a delay constraint d would otherwise be violated. We consider the tandem of
routers in section 3.2 as an equivalent network element offering a service curve  and having a
delay constraint d . We denote by a the incoming traffic. We derive a representation formula for a
scenario when data are discarded because of a delay constraint: any entering data must have exited
the system after at most d unit of time, otherwise it is discarded.

Let ()x t be the part of ()a t that does actually enter the system, and let ()y t be its output. The
literature [10] has proven that, the amount of lost data L(t) in the interval [0,t] is given by

2 2 1

2 1 2 2 1 2
0 ... 1

() sup{ sup { [() () ()]}}
n

n

i i i i
n N s s s t i

L t a s a s s d s 
      

    

(8)

Theorem 1(minimum loss rate): Consider a system with delay constraint d , offering a service

curve β to a flow constrained by an arrival α . Then the loss rate
()

()
()

L t
l t

a t
 is bounded above by

0

()
() 1 inf

()s t

s d
l t

a s




 

 
  
 

$

(9)

Proof:

With ()l t$ defined by (9), we have that for any 0 t    ,

0

() () ()
1 () inf

() () () ()s t

s d d d
l t

a s a a a

      
    

    
   

 
$. Due to definition of the arrival curve, we

know () () ()a a a      . Therefore, for any 0 t    ,

() () () () [() ()]a a d l t a a            $. For any 0 {1,2,3...}n ¥ and any sequence

1 2{ }k k ns   with 2 10 ns s t   L , setting 2 1is  , 2is  , and summing over i , we

obtain 2 1 2 2 1 2 2 1 2
1 1

[() () ()] () [() ()]
n n

i i i i i i
i i

a s a s s d s l t a s a s  
 

       $. Because ks are increasing

with k , the right hand side of this inequality is always less than, or equal to () ()l t a t$. Therefore,

we have
2 2 1

2 1 2 2 1 2
0 ... 1

() sup{ sup { [() () ()]}} () ()
n

n

i i i i
n N s s s t i

L t a s a s s d s l t a t 
      

       $, which shows

that () () () / ()l t l t L t a t $.□

1295

Fig.5. system losses in a bounded
delay element

Fig.6. Schematic of the regulation method

4. The Flow regulation Method

As discussed in section 3.1, bursts in OBS network can get lost due to the congestion in
data-plane and control-plane. The latter could be avoided via regulating the packets arrival rate to
the electronic router, as advocated by X.Yin et al [14]. For any node in an OBS network, there
generally exist an infinite number of feasible combinations of burst length and offset size that
satisfy the control-plane blocking constraint [8]. Specifically, there is a trade-off between the
required average burst duration and offset size in each node. A reasonable design objective is
therefore to select from this feasible set the operating point that corresponds to the average
minimum end-to-end control latency in the network.
4.1 Flow regulator

Our regulation method is shown in Figure 6. At the ingress node, traffic flows are first classified
by the packet classifier according to the destination, and then sent into different queues to be
aggregated into bursts. For simplicity in hardware implementation, bursts to different destination
nodes are served by different burst assembly queues (BAQs). Bursts destined to a particular egress
node, are sent to the same burst transmission queues (BTQs). Before a flow is scheduled onto the
outgoing wavelength channel, a regulator is used to implement the regulation policy so that along
its traversal, the flow suffers the minimum loss rate while it is ensured against violating an
acceptable delay bound. The regulator uses the burst transmission queue to store incoming traffic,
so it can also reduce the backpressure of burst source nodes.

The regulator is implemented using the token-bucket mechanism [15] as shown in Figure 7. The
token queue has a size of  . Initially the token queue is full. The 1-packet/token server admits one
header packet by de-asserting the “stall” signal as long as the token queue is not empty. The token
queue is realized by a saturating credit counter that increments at rate  , and saturates when it
reaches a count of  . A packet can be transmitted if and only if the credit counter is positive (at
least one token available). Each time a header packet is sent, the counter is decremented by 1.

Figure 8 shows that an input flow jf reshaped by a regulation component µ (,)j Rj RjR p  results in

an output flow Rjf . We assume the regulator has the same input and output data unit and the same

input and output capacity C packets/cycle. We also assume that jf ’s average bandwidth

requirement must be preserved. The output flow Rjf is characterized by the four

parameters (, , ,)j Rj Rj jM p   , where [,]Rj j jp p , [,]Rj j jM  . Rjf can be reshaped without

loss by the regulator, meaning that Rjf has the same M and average rate  as jf . The two

intervals [,]Rj j jp p and [,]Rj j jM  are called the regulation spectrum[13], where the former

is for the regulation of peak rate and the latter for the regulation of traffic burstiness. The regulation

1296

spectrum defines the upper and lower limits of regulation. Selecting appropriate Rjp and Rj is very

effective in performance and cost of communications. These parameters will be calculated by the
optimization problem in Section 4.2.

Fig.7. (ρ,σ)-based regulation mechanism Fig.8. network calculus model for flow regulator
Note that a regulator also introduces a time delay regD for each header packet. Its bound can also

be calculated by network calculus, which is µ(, (,))
j j

jreg j R RD H f R p  , where (..,..)H is the

function to compute the maximum horizontal distance between the arrival curve and the service
curve.
4.2 The Optimization Problem

Using ingress regulation, our objective is to avoid potential congestion in the control-plane
network. That is, to minimize the end-to-end control latency of each flow under the constraint of
minimum burst loss rate by selecting the optimal regulator parameters (i.e., peak rate and traffic
burstiness). Thus, the minimization problem (,)Rj Rjf p  can be formulated as follows.

Let
jregD denote the regulator delay and jD denotes the end-to-end delay bound. Given a set

of flows  (, , ,)j j j j jF f M p    , routing matrix R, the minimum loss rate that each flow can suffer

in the network { }jl L for jf F  , find the regulator parameters, peak rate Rjp and traffic

burstiness Rj for jf F  , such that

,
min ()

Rj Rj
j

reg j jp
f F

D D


 

 (10)

subject to
 jj jl L f F   (11)

 j Rj j jp p f F     (12)
 j Rj j jM f F     (13)

where Rjp and Rj for jf F  are optimization variables.

Equation (10) is the objective function of this optimization problem which minimizes end-to-end
delay requirements. Constraint (11) says that the burst loss rate of each flow j cannot exceed the
maximum budget that it can suffer in the network jL . Since we measured the flow performance in
terms of its losses, we can consider jL as a criterion of minimum guaranteed performance for
flow j. Constraints (12) and (13) are related to two intervals [,]Rj j jp p and [,]Rj j jM  . We

see clearly that by following the above mentioned equations, we can understand the effect of
optimization variables on the objective function and all constraints of the defined problem.

In the literature, (10) is called a nonconvex NLP problem [16]. There are different methods for
solving this kind of optimization problems. In particular, we will solve the optimization problem
(10) using interior point method for constrained NLP problems [16].
4.3 Optimization method

The interior-point approach to constrained minimization is to solve a sequence of approximate
minimization functions, namely the barrier functions. Based on (10), For each 0  , the
approximate problem is

1297

5

,
1

min () ln()
Rj Rj

j

F

reg j j ip
f F i

D D s



  

  
(14)

subject to
0 1, ,jj i jl L s f F i F      L (15)

0 1, , 2j Rj i jp s f F i F       L (16)

0 1, ,3Rj j i jp p s f F i F      L (17)

0 1, , 4j Rj i jM s f F i F      L (18)

 0 1, ,5Rj j i js f F i F       L (19)

The approximate problem is a sequence of equality constrained problems. These are easier to
solve than the original inequality-constrained problem. There are as many slack variables si as there
are inequality constraints g. The si are restricted to be positive to keep ln(si) bounded. As μ
decreases to zero, the minimum of f(μ) should approach the minimum of f. The added logarithmic
term is called a barrier function.

To simplify discussions, we transform it into vector form.
Define 1[, ,]T

R R R Fp p p L , 1[, ,]T
R R R F   L , 1 5[, ,]T

Fs s s L and assume

1 5(,) [(,), , (,)]T
R R R R R RFg p g p g p   L so that (,)R Rg p s  is a vector that its element is the

constraints(15)-(19). The problem (14) can be rewritten as
5

, , , ,
1

min (,) min (,) ln()
R R R R

F

R R R R i
p s p s

i

f p f p s 
  



  
(20)

subject to
(,) 0R Rg p s   (21)

To solve the problem (20), we first consider the first-order optimality condition, namely the
Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are analogous to the condition that
the gradient must be zero at a minimum, modified to take constraints into account. The KKT
conditions use the auxiliary Lagrangian function:

5

1

(, , ,) (,) ln() ((,))
F

T
R R R R i R R

i

L p s f p s g p s     


   

(22)

where 1 5(,)T
F   L is the vector of Lagrange multipliers. At an optimal solution (, ,)R Rp s of

the barrier problem, we have
(, , ,) (,) (,) 0

R Rp R R p R R R RL p s f p p         (23)

(, , ,) (,) (,) 0
R RR R R R R RL p s f p p          (24)

1(, , ,) 0s R RL p s S e        (25)

where 1 5(,) ((,), , (,)
R RR R p R R p R RFp g p g p     L and

1 5(,) ((,), , (,)
R RR R R R R RFp g p g p      L are the matrixes of constraint gradients with

respect to Rp and R , respectively, and where (1,1,1,1)Te  and S is the diagonal matrix with

its non-zero element , 1, ,5is i F L .

To solve the approximate problem, we generate a step d for displacement at an iterate k, where
(, ,)

R R

T
p sd d d d . The algorithm uses one of two main types of steps at each iteration:

 A Newton step in (, ,)R Rp s . This step attempts to solve the KKT equations, for the

approximate problem via a linear approximation.
 A CG (conjugate gradient) step, using a trust region.
By default, the algorithm first attempts to take a newton step. If it cannot, it attempts a CG step.

One case where it does not take a direct step is when the approximate problem is not locally convex
near the current iteration.

1298

At each iteration, the algorithm decreases a merit function, that is
5

1

() ln() (,)
j

F

reg j j i R R
f F i

D D s g p s   
  

     
(26)

The parameter  may increase with iteration number in order to force the solution towards
feasibility. If an attempted step does not decrease the merit function, the algorithm rejects the
attempted step, and attempts a new step. The objective and constraints must yield proper (double)
values at the initial point.

In this paper, the proposed optimization model is realized in Matlab. Regulator parameters
computed by this model are used to implement our regulation method in simulations. Further details
about the optimization method can be found in [16].

5. Simulation results

5.1 Simulation Environment
We used PhoenixSim[17], which is a simulator for modeling and analyzing the performance of

manycore systems that use photonic networks. The OBS network model for manycore-to-DRAM
communication and regulation methods were implemented and integrated into PhoenixSim.
Throughout the experiment, we considered an OBS network with 1GHZ header processing
frequency. We also used a hybrid timer/size based burst assembly algorithm, which aims to
introduce negligible assembly delay and guarantee that all data bursts are of the same size, 128
bytes. A header packet has a fixed size of 8 bytes.

Table 1important parameters about the cores and memory subsystem
Feature Value
Cores Out of order execution, 16 node per cluster

Memory
hierarchy

L1 cache Private, 32 KB (per tile), 64 byte line size, 8-way
associativity, LRU replacement

L2 cache Private, 3 MB (per tile), 64 bytes line size, 24-way
associativity, LRU replacement

Cache coherence Full-map directory based
DRAM Base DRAM Frequency (MHz) 1333

Total Memory Per MAP(GB) 2
Bandwidth per DIMM (Gb/s) 256

Table 2 manual mapping of real benchmark races

App name Ingress Cluster MAP no Traffic characteristic (, , ,)j j j jL p  

cholesky (3,3) Map01 (1,1,3, 0.3)

fft (1,2) Map03 (0.9,1,2, 0.4)

fmm (1,1) Map04 (0.8,1,2, 0.4)

Lu_non_con (0,3) Map06 (1,0.9,4, 0.5)

Ocean_con (1,3) Map07 (0.9,0.7,3, 0.3)

radix (2,3) Map09 (0.7,0.9,2, 0.6)

Water_spatial (3,2) Map11 (1,0.8,2, 0.4)

We used real data traces of the SPLASH2 [18] benchmarks and mapped them onto a 4x4 OBS
mesh network (see Figure 3). Each edge node is connected to an 8- core cluster. Memory requests
and responses are relayed by the OBS network using XY routing between core clusters and off-chip
DRAMs.
5.2 Splash2 traffic patterns

 Chip-scale OBS network is actually devoted to moving data between the last layer cache(L2,
or L3 cache) and off-chip DRAM banks. The impact of memory hierarchies must be considered
when we generate real application traces. Therefore, we used the Graphite simulator[19], which
provides accurate modeling for the memory subsystems (including cache hierarchies with full cache
coherence) and cores. Table 1 lists some important parameters of our simulation setup, which are
selected to mimic real execution environment.

1299

We first run parallel applications of SPLASH2 on Graphite and collected their traces, including
instructions and events from the core, network, and memory subsystem. We then manually mapped
these traces onto the core cluster (see Table 2) and rerun these traces in the Phoenixsim simulator, in
which the control-plane congestion phenomenon and our regulation method are modeled.
Furthermore, our simulation focused on the “Cluster-to-Dram” flows, since they are more prone to
control-plane congestion than “Dram-to-Cluster” flows due to their smaller transfer granularity (e.g.,
read /write request, bytes to be written to Dram). Table 2 also lists the traffic characteristics for
“Cluster-to-Dram” flows used in our simulation.

As we mentioned before, a regulator limits the flow injection process with two parameters (peak
rate and burstiness). Since there are 7 flows in the example, 14 parameters have to be assigned to
regulators. To show that how these parameters heavily affect the loss rate and communication delay,
we consider two different regulator sets. 1) Optimized regulators, which are optimized based on the
proposed optimization problem (10). 2) Random regulation, which are not optimized. Obviously,
there is a number of unoptimized configurations. Therefore we choose randomly the optimization
parameters in the regulation spectrum. Then, the total maximum delay and average loss rate are
calculated and depicted in Tables 3, along with values for a system without regulators.

From Table 3, we see that the optimized regulation scheme leads to larger reduction in average
loss rate and smaller total maximum delay when compared with the no-regulation scheme. Also the
Table shows that random regulation method somewhat decrease the loss rate and delay because of
reducing the contention for shared resources, although their regulator parameters are not configured
appropriately. That is because these suboptimal parameters are in the same regulation spectrum as
the optimized ones. However, when we compare these suboptimal results with the ones in the
optimized regulation, we see the optimal regulation scheme shows a large improvement. As a result,
we can minimize total network delay and improve communications performance by assigning the
peak and burstiness parameters of regulators in a wiser manner.

Table 3 Comparison for all flows in terms of delay and network loss rate
 Regulator delay Total traversal delay Average loss rate
No regulation 0 4583 17%
Random regulation 42 4376 16%
Optimized regulation 25 890 7%

To go into more detail, we also depict the peak rate and traffic burstiness of each flow for our
regulation schemes. Figure 9 and Figure 10 show that regulators dramatically reduce peak rate and
traffic burstiness of flows, respectively.

Fig.9. peak rate of flows

Fig.10. traffic burstiness of flows

6. Conclusions and Future Works

In chip-scale optical burst-switched networks, massive fine-grained data bursts, stringent delay
requirement and constrained network operation frequency result in finite electronic header

1300

processing capacity, which leads to serious control-plane congestion. Long transmission delay and
large burst loss rate caused by the congestion may ultimately limit the maximum system throughput.
So, in this paper, we propose a new approach using flow regulation to address the problem. In our
approach, concurrent traffic flows are globally regulated and coordinated before being injected so
that we can minimize the end-to-end delay of each control packets flow without violation of the
constraint of minimum burst loss rate. Based on network calculus, we build an optimization model
to select the optimal regulator parameters (i.e., flow rate and traffic burstiness). Simulation results
with benchmark traces show that our approach can effectively minimize the control-plane
congestion and improve system performance. Our future work will focus on dynamic regulation
which can configure regulator parameters on-the-fly.

*Acknowledgments

This research is partially supported by the grants from National Program on Key Basic Research
Project of China (Grant No. 2012CB933504), National Natural Science Foundation of China (Grant
No. 61402502).

References

[1] T. Agerwala. Exascale computing: The challenges and opportunities in the next decade[C],
IEEE HPCA16, 2010.

[2] M. J. R. Heck, et al. Hybrid Silicon Photonics for Optical Interconnects[J], IEEE Journal of
Selected Topics in Quantum Electronics, 2011.

[3] D. Vantrease, et al. Corona: System Implications of Emerging Nanophotonic Technology[C],
IEEE 35th International Symposium on Computer Architecture, 2008.

[4] G. Hendry, et al. Circuit-Switched Memory Access in Photonic Interconnection Networks for
High-Performance Embedded Computing[C], International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2010.

[5] F.Quanyou, et al. A Hybrid Photonic Burst-Switched Interconnection Network for
Large-Scale Manycore System[J], IEICE Transactions on Information and System, vol. E95-D, pp.
2908-2918, 2012.

[6] C. Qiao and M. Yoo. Optical burst switching (OBS) - a new paradigm for an optical Internet[J],
Journal of High Speed Networks, 1999.

[7] N. Barakat and T. E. Darcie. The Control-Plane Stability Constraint in Optical Burst Switching
Networks[J], IEEE Communications Letters, vol.11, 2007.

[8] N. Barakat and T. E. Darcie, Control-Plane Congestion in Optical-Burst-Switched Networks[J],
IEEE/OSA Journal of Optical Communications and Networking, vol.1, 2009.

[9] T. Venkatesh and C. S. R. Murthy, An Analytical Approach to Optical Burst Switched
Networks, Springer Publishing Company, 2009.

[10] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet. New York: Springer-Verlag, 2001.

[11] R. L, Cruz. A calculus for network delay, part I: Network elements in isolation[J], IEEE
Transaction on Information Theory, vol.37, pp.114-C131, 1991.

[12] C. Chang. Performance Guarantees in Communication Networks, Springer-Verlag, 2000.

[13] Z. Lu, M. Millberg, A. Jantsch, A. Bruce, P. van der Wolf, and T. Henriksson. Flow
regulation for on-chip communication[C], Proceedings of DATE, 2009.

1301

[14] X. Yijun, et al. Control architecture in optical burst-switched WDM networks[J], IEEE
Journal on Selected Areas in Communications, vol.18, pp.1838-1851, 2000.

[15] P. P. Tang and T. Y. C. Tai. Network traffic characterization using token bucket model[C],
Proceedings of IEEE INFOCOM, 1999.

[16] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[17] J. Chan, et al. PhoenixSim: A simulator for physical-layer analysis of chip-scale photonic
interconnection networks[C], Proceedings of Design, Automation and Test, 2010.

[18] S. C. Woo, M. Ohara, et. al. The SPLASH-2 Programs: Characterization and Methodological
Considerations[C], Proceedings of ISCA, 1995.

[19] J. E. Miller, et al. Graphite: A distributed parallel simulator for multicores[C], Proceedings of
International Symposium on High Performance Computer Architecture , 2010.

1302

