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Abstract. Based on Optimal Latin Hypercube Design (Opt LHD) method and Particle Swarm 
Optimization (PSO) algorithm, this article presents a method for tuning PID control parameters of 
quad-rotor. Firstly, the range of 15 PID parameters are obtained by experience. Within the range of 
the PID parameters, Opt LHD method is applied to get few but evenly distributed test point groups, 
thus the adjustment work is reduced. Then, experiments for these PID test point groups are 
conducted and test results are used to establish response surface model (RSM). Finally, optimal PID 
parameter combinations are solved based on PSO Algorithm in this RSM. This method solves the 
following problems: 1. large quantity of aimlessly repetitive tuning work; 2.getting global optimum 
PID parameters combinationswith personal experience. The final experiment results have been 
applied to quadrotor andthe validity of this method is proved. 

1. Introduction 
Quad-rotor has six degrees of freedom and attitude control is the core part of the entire control 

system [1,2]. General algorithm models about attitude control are similar, and the mainwork is tuning 
the PID parameters. However, PID parameters tuning is mainly based on designers’ experience 
now[3], which needs a large amount of repeating work, and it takes time to reach a stable state. To 
solve problems in PID parameters tuning, this paper presents a practical method combining optimal 
Latin hypercube and PSO algorithm. 

2. Quad-rotor Control System Modeling 
Quad-rotor has six degrees of freedom with only four independent drives, so it is an 

under-actuated and strong-coupling system. 
Firstly, there are two basic coordinate systems: geodetic coordinate system (reference 

coordinate system) E (O-XYZ) and body coordinate system B (o-xyz). The relationship between 
the two coordinate systems are determined by three attitude angles, which are: roll angle φ, 
rotation about x axis in body coordinate system, and rotating to the right is positive; pitch angle θ, 
rotation about y axis in body coordinate system, and rotating down is positive;yawangle ψ, rotation 
about z axis in body coordinate system, and rotation to the left is positive [4]. 

Suppose the vehicle is rigid with the center of mass located at its geometric center, and three 
forces are applied to it: four lift forces Fi, i =1, 2, ···, 4, which are proportional to rotational speed, 
gravity and air resistance. According to Newton’s law and the relationship between body and 
geodetic coordinate systems, the acceleration can be calculated by Eq.1. 
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ki,i=1,2,3 is air resistance coefficient in reference coordinate system, which can be 
neglected [5].Similarly, rotational equations of quad-rotor in reference coordinate system can be 
obtainedbased on moment balance Eq.2: 

 
𝑠𝑠 ̈ = 𝑙𝑙(𝐹𝐹4 − 𝐹𝐹2 − 𝑘𝑘4�̇�𝑠) ∕ 𝐼𝐼𝑥𝑥. 

�̈�𝑠 = 𝑙𝑙(𝐹𝐹3 − 𝐹𝐹1 − 𝑘𝑘5�̇�𝑠) ∕ 𝐼𝐼𝑦𝑦.(2) 
 �̈�𝑠 = 𝑙𝑙(𝐹𝐹1 − 𝐹𝐹2 + 𝐹𝐹3 − 𝐹𝐹4 − 𝑘𝑘6�̇�𝑠) ∕  𝐼𝐼𝑧𝑧. 

 
l is the distance from center of the rotor to center of the aircraft, and ki,i=4,5,6 is air resistance 

coefficient when three axes are rotating, which can be neglected too[5].  
Ignoring the air resistance and simplifying the relationship of lift force Eq.3. 
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According to the relationship between translation and rotation, the quad-rotor control system 

model is Eq.4 [6]: 
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3. PID Control 
All the results mentioned above lead to four control variablesu, dividing the complex nonlinear 

coupling model into four independent control channels [7]. It means the six freedom degrees of body 
can be controlled by 1 2 3 4, , ,u u u u . Meanwhile, double-loopPID controller has better performance than 
a single loop. This paper uses the algorithm of double closed-loop control, andthe structure of the 
control unit is shown in Fig.1: 

 
Fig.1 The Structure of Double-loop PID Controller 

Firstly, the angle error obtained by measuring current attitude angles and target attitude angles is 
multiplied by angle proportional coefficient kp1. Then, the angle error is integrated, and the result is 
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multiplied by coefficient ki1. Add the two results above together and clip it as the target rate of 
angular velocity control unit [8]. The difference between target rate and gyroscope value is obtained 
and it is set as the input of the inner-loop controller. 

4. Optimum Latin Square and PSO to Optimize the Process of PID Tuning 
Problems remain in the traditional process of tuning the PID control parameters of the quad-rotor: 

1) The amount ofexperiment points to be tested is large; 2) The direction of the tuning process is 
relatively ambiguous. Based on Optimum Latin Square and PSO, this paper solves the problems 
above by decreasing the number of the experiment samples and searching for the optimum solution 
more directionally. The concrete program flow chart is shown in Fig.2. 

 

 
Fig. 2 Program Flow Chart 

The multiple correlation coefficient𝑅𝑅2is used as the index of error analysis to examine the 
accuracy of the established model. 𝑅𝑅2is defined in Eq.5: 

 
𝑅𝑅2 = 1 − 𝑄𝑄 ∕ 𝑆𝑆.                 (5) 

 
Q and S are residual sum of square and regression sum of square respectively. 𝑅𝑅2 lies between 

0 and 1. The higher the value is, the higher accuracy and reliability the model has [9]. 
4.1 Orthogonal Experimental Design Based on Optimum Latin Square 

Advantages of Optimum Latin Square are as follows: 1) it is good at space filling. The number of 
sampling points needed is 81 in full factorial design while it is only 9 in Optimum Latin Square 
design; 2) it hashigh nonlinear response degree and uniform distribution of sampling points [10]. 
Compared with Orthogonal experiment, more combinations can be studied with the same number of 
sampling points. In an n-dimensional space, each one-dimensional coordinate interval 
�𝑥𝑥𝑘𝑘𝑚𝑚𝑖𝑖𝑛𝑛, 𝑥𝑥𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥�,𝑘𝑘 ∈ [1,𝑠𝑠]is evenly divided into m intervals, and each small interval is denoted 
as�𝑥𝑥𝑘𝑘𝑖𝑖−1，𝑥𝑥𝑘𝑘𝑖𝑖 �, 𝑠𝑠 ∈ [1，𝑚𝑚]. Select m points randomly, and make sure each level of a single factor is 
studied only once,which will constituteann-dimensional space with m samples. This is am ×
n Optimum Latin Square design, as shown in Fig.3(a), (b). 
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(a) Full Factorial design             (b) Optimum Latin Square Design 

Fig3: Full Factorial Design and Optimum Latin Square Design 
The flight control system mentioned in this paper adopts the double-loop control structure: angle 

is the position loop (external loop,containing parameters P and I); rate is the speed loop (internal 
loop, containing parameters P, I and D), as shown in Table 1. The external loop of this cascade 
control is the master control part. The overall accuracy of this control system is determined by the 
external loop, and the internal loop plays a part of rough control. 

Table 1 Value Ranges of PID Parameters 
Parameter Angle_P Angle_I Rate_P Rate_I Rate_D 
Interval 0.05~0.3 0.001~0.01 0.1~1.5 0.001~0.01 0.01~0.5 
Step 0.001 0.0001 0.01 0.0001 0.001 

 
Roll, pitch and yaware the three states thatneed to be adjusted, and there are 5 parameters to 

adjust for each state. Applying the Optimum Latin Square to solve this problem will transform the 
process to an experiment design problem, and the interval range of the 5 (m=5) dimension space is 
known. Then calculate 200 (n=200) distributed sample points combinations 
X{𝐴𝐴𝑝𝑝𝑖𝑖，𝐴𝐴𝐼𝐼𝑖𝑖，𝑅𝑅𝑃𝑃𝑖𝑖，𝑅𝑅𝐼𝐼𝑖𝑖，𝑅𝑅𝐷𝐷𝑖𝑖}， i ∈ [1，200] , and each combination contains 5 PID control 
parameters in the table 1. 

Input the 200 combinations above to the aircraft one by one, then detect the deviation between 
the ideal response value and the measured one, denoting the deviation as ∆𝑦𝑦𝑖𝑖 . We can 
obtainY�𝐴𝐴𝑝𝑝𝑖𝑖，𝐴𝐴𝐼𝐼𝑖𝑖，𝑅𝑅𝑃𝑃𝑖𝑖，𝑅𝑅𝐼𝐼𝑖𝑖，𝑅𝑅𝐷𝐷𝑖𝑖，∆𝑦𝑦𝑖𝑖�，i ∈ [1，200]. According to this result, the response 
surface model can be established, then take the optimal value (when the∆𝑦𝑦𝑖𝑖is minimum) as an initial 
particle value for PSO algorithm. 
4.2 Optimization of PID Parameters Based on PSO Algorithm 

To obtain the optimal combination of PID parameters for each channel, this article adopts 
Particle Swarm Optimization (PSO) algorithm. This algorithm has high efficiencyand 
goodconvergence to achieve optimization. 

PSO is based on a group of particles. The solution for each optimization is to search for a birdin 
the space, which is called “particle”. Every particle has its position. The ith particle is expressed as 
𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1，𝑥𝑥𝑖𝑖2， ··· ，𝑥𝑥𝑖𝑖𝐷𝐷)  and the flying speed is expressed as𝑉𝑉𝑖𝑖 = (𝑣𝑣𝑖𝑖1，𝑣𝑣𝑖𝑖2， ··· ，𝑣𝑣𝑖𝑖𝐷𝐷) . 
Meanwhile, every particle has a fitness value decided by the objective function. 

In every iteration of particle swarm, we need to find two extremum of particles. The updating 
formula of the speed and position of the particle is as Eq.6 and Eq.7: 

 
𝑣𝑣𝑖𝑖𝑖𝑖 = ω × 𝑣𝑣𝑖𝑖𝑖𝑖 + 𝑐𝑐1 × 𝑟𝑟1 × (𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖) + 𝑐𝑐2 × 𝑟𝑟2 × (𝑝𝑝𝑔𝑔𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖).   (6) 

 
                              𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 .                                 (7) 
 

𝑣𝑣𝑖𝑖𝑖𝑖 is the dth dimensional speed of particle i in the tth iteration process. 𝑥𝑥𝑖𝑖𝑖𝑖 is the current 
position of particle i in the tth iteration. ω is inertia weight. Learning factors c1 and c2 are 
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nonnegative constants. r1 and r2 are evenly distributed random numbers in [0, 1]. 𝑝𝑝𝑖𝑖𝑖𝑖is the optimal 
value of current particles, and 𝑝𝑝𝑔𝑔𝑖𝑖  is the global optimal value of the particle swarm[11].The 
parameter setting in PSO Algorithm is shown in Table 2. 

In this experiment,∆𝑦𝑦𝑖𝑖is calculated continuously. It works as afitness functionto update the 
position and speed of the particles. After 1000iterations, the parameter combination with 
minimum∆𝑦𝑦𝑖𝑖in this response surface can be obtained. 

Table 2 Parameter Tuning of PSO Algorithm 

PSO 
Coefficients 

Coefficients 

Inertia 
Weight 

Global 
Increment

al 

Particle 
Increment

al 

Number of 
Particles 

Maximum 
Iterations 

Maximum 
Velocity 

1 0.729 1.49 1.494 
10 1000 0.1 2 0.9 1.2 1.2 

3 0.72 2.04 1.15 

5. Simulation Results 
The optimal solution combinations are solved using three groups of different parameters in PSO 

algorithm, as shown in Table 3. Combinations are tested in quadrotor and the minimum difference 
between actual angle value and ideal angle value indicates theoptimal result.Thecorresponding PID 
parameters combination is the optimal result for control system. 

Table3 Actual Minimum Angle Values of PID Parameters 

PSO Angle_P Angle_I Rate_P Rate_I Rate_D Difference 
between Angles 

1 0.0515 0.0991 1.4821 0.0022 0.0039 0.5 
2 0.0638 0.0088 1.372 0.0077 0.0073 0.8 
3 0.0519 0.0997 1.4997 0.0018 0.0043 0.5 

6. Summary 
Simulation resultsand tests of quadrotor show that the Optimum Latin Square design method 

greatly reduces the test points, making the response surface model easier to build and improving the 
precision of PSO algorithm. Meanwhile, the optimization process are more automatic and 
directional, which can obtain better results. 
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