

A Group of Design Principles and Testing Methods for Improving
Software Quality

Zhang Ya_qi1, a, Jiang Zhi_ping1,b and Lin Yan1,c
1Courtyard 10#,Anxiang North Lane, ChaoYang District, Beijing 100101, China

aWingwinglili@foxmail.com, bgfbddl@msn.cn, c15652215681@163.com

Keywords: Software Design, Software Quality, Software Test

Abstract. This paper raises a group of software principles, which have higher operability and can
improve the robustness, reliability, maintainability, etc, of software, as well, the article gives specific
advice on testing method for each principle.

Introduction

Software quality is a collection of characteristics which are relevant to the specified requirements
or implied capabilities of the software, including validity, reliability, property, easy-using, security,
compatibility, etc [1]. As a kind of invisible electronic product, software gets more influence from the
environment and the user compared to the hardware, their qualities are more decided by the
preliminary argumentation, the design and the development stage. Researches have shown that, it
needs lesser cost in improving software quality in the early stage of software development, which
brings a larger investment income, as shown in Fig 1 [2]. As the bridge between requirements and
developments, software design has the most important impact on the quality of the software.

This article focus on the optimizing of software design itself, raising a group of principles which
have a higher operability, so that the robustness, reliability, maintainability, etc, of the software can
be improved. These principles could be practiced in software engineering, and can also be confirmed
in software testing phase.

Requirement
Demonstration

Software
Design

Software
Development

Using and
Maintenance

Cost of Strengthening the
quality characteristics

Percentage
of the

Effect On
the Whole
Lifecycle

Cost

Fig 1 Contrast between the cost in quality and the effect on lifecycle cost

Source Of The Design Principles.
Since software has no producing link, most of qualitative problems of the software are caused by

the defects of software design. Software Failure Mode Effect Analysis (SFMEA) is, through
identifying the failure mode of the software, analyzing the cause of the failure and the serious
consequences will be caused, so that the method of eliminating the harm can be searched. Applying
SFMEA in the design stage of software developments, could prevent potential faults and put forward
corrective actions in time.

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 1546

With the development of internet, big data, etc, which are applied in all areas, software becomes
more complicated and modularized, increasingly demanding on software normalization and
reliability. In this background, the common failure modes are summarized from the practice: a)
Correlation fault between software modules; b) A longtime running failure; c) Environmental
adaptability problems; d) Operation fault.

Software design methods are reversely deduced from the failure mode to avoid the fault in the
practice, and the design principles are summarized [3]. Other then, for a long time, there are no
widely recognized effective methods in software quality testing, the developers pay more attention to
the realization of the function and the performance index, but pay little attention to the software
quality design. Therefore, the design principles putted forward in the article pay special attention to
testability, and test methods are given for each design principle [4].
Design Principles

Loosely Coupled Association
Description. Association is the interaction between the two function entities (processes, thread,

etc). This connection may be a kind of forced or loose dependence, existing at the start, or while
running. A,B is the function entity, A depends on B, signed as AB, which means part of A
functions need assist in the completion of B, if B failed, A functions will not be fully available.
Dependence is an objective existence, could not be eliminated, but there are also tight coupling and
loose coupling which have real difference.

The tight coupling dependence performs as: a) If B does not start, then A starts failure; b) If error
occurs in B running, A could not identify the error, and then part of A functions are failed; c) If B
restarts, A could not recover the connections and affairs with B, and there is a fault.

The loose coupling dependence performs as: a) If B does not start, A still can start up ever,
monitoring B according to certain rules, and can set up connection as soon as B starts, at the same
time, A can give the correct feedback to the user’s request which needs B’s assistance; b) If there is a
fault during B running, A can give a clear declaration. c) If there is a restart of B while running, A can
also detect it through regularly monitoring or just at the visiting time, then recover the connections
and affairs with B, to ensure the request being answered.

Absolutely, the loose coupling dependence blocks up the spreading of the fault, which makes the
system become stronger and more reliable, easier to be maintained, and function entity can upgrade
and evolution separately. This principle especially adapt to the systems which have complicated
associations.

Testing Method. First, identify the function entities in the software, supposing the set of the
function entities is G, G = (G1, G2, G3,…, Gn). Pairwise these entities to get Cn

2 records, identifying
whether there is an association between each two entities or not, table 1 is formed.

Table 1 Associations in the software

No. Depending entity Depended entity Start dependence Running dependence Remark

1 G1 Gn N N

1≤m, p
≤n

… … … … …

m Gm Gp Y Y

… … … … …

n Gn G1 N Y

Note: ‘Y’ means that the association does exists, ‘N’ means that the association does not exists.
Design testing case Um

p: i) Keep Gp not start, then start Gm, if Gm fails to start, test does not pass; ii)
If Gm starts successfully, run functions of Gm one by one, if the function is not associated with Gp, it
can be normally used, otherwise would warn user that the function can not work well as a result of
abnormal Gp.The above is not satisfied, the test does not pass; iii) Start Gp, then run the functions of
Gm, if no error occurrs, test is through.

1547

Service Has Daemon
Description. For the coral and key sevice of the software, once the service stops or loses response,

it will cause almost all functions of the software to fail, processes to terminate, business to be
paralysed and other major losses. To ensure continuous operation of such services, daemon is always
designed to monitor and protect the service.

Assume the set of the daemon group entities is W, W = {(F1, f1),…,(Fi, fi),…,(Fj, f j),…,(Fn, fn)}(1

≤i, j≤n), Fi represents the key services, performing normal business logic, fn represents daemon,
monitoring the state of Fi, not containing business logic. Once fi monitors Fi stopping, it immediately
restarts Fi or performs the repair program until Fi returns to normal. For a special key service Fj, a
two-way guard strategy would be taken. In addition to the implementation of the normal business
logic, Fj also monitors the state of fj. If fj ran abnormally, Fj would restart or repair fj, making itself
enter in the protected state once again.

With the establishment of daemon group, the possibility of disruption could be reduced, the
duration time of service be prolonged, and the rubustness, reliability and security of the system be
improved. This principle is especially adapted to those software and services who are most important,
have serious influence, and need to run continually.

Testing Method. First, identify the coral and key sevices of the software with W1, W1 = {F1,
F2,…,Fp,…,Fn}(1≤p≤n), pick out the special important services in W2, W2 = {Fi,…,Fj}(1≤i, j≤n).

Design testing case Up for each Fp in W1: i) Stop Fp, perform the function of the software until error
ocurrs, then close the software; ii) Stay and wait for about 1 minute or so, then restart the software and
perform the function which has just failed, if error still appeared, test would not pass; iii) Continue to
perform the function of software business, if no error occurs, test pass, while if there were errors, test
would not pass.

Design testing case Ui for each Fi in W2: i) Stop the damon of Fi, and then perform functions of the
software, if error ocurrs, test does not pass; ii) Stay and wait for about 1 minute or so, then stop Fi,
perform functions of the software until error ocurrs, then close the software; iii) Stay and wait for
about 1 minute or so, then restart the software and perform the function which has just failed, if error
still appear, test does not pass; iv) Continue to perform functions of software business, test could pass
only if no error occurred.

Resources Have Allowance
Description. Resources refers to the objects of system which software may write or create in the

process of starting and running, including memory, disk, handles, threads, database, application
connections, etc. Resources have allowance means, the software should ensure that allowance of
remained resource could satisfy the user‘s requirement before applying. Identify the collection of
system resources with Z, Z =(Z1, Z2,…, Zn), if the operation apply for Zi (1≤i≤n),firstly the software
should judge whether Zi can be accessed or written in, and the allowance of Zi is enough or not.

This principle can effectively avoid the disk being written full, memory being overrun, space being
insufficient, the number of connections beyond limit, and such failures as use out of resources, in this
way to improve the system security and environmental adaptability. The principle is especially
applicable to the software which has regular, continuous, large amount of data creating or writing.

Testing Method. Assume the collection of operations related to Zi is Ci, Ci = (Czi
1,…, Czi

j,…,
Czi

m)(1≤j≤m). Design testing case Ui for Ci: i) Locking Zi for it can not be used, perform the
operations from Czi

1 to Czi
m, if abnormal errors occurrs, test does not pass; ii) Start another program,

all occupying Zi, perform the operations from Czi
1 to Czi

m, if errors occurrs, test does not pass.
Activity Is Recoverable
Description. Activity is the operation or task which makes the system state change. Activity is

recoverable means that, if the software operation is suspended or illegally closed due to force majeure,
when the software restarted, it could return to the state just before shutting off, parameters inputted
could be reserved, while if not, give specification.

List all activities of the software in collection A, A = (A1, A2,…, Ai,…, An)(1≤i≤n), the activity
diagram is shown as Fig 2. Software can record the states before and after the completion of Ai,

1548

information user inputted can also be recorded. Once system interruptted while Ai operating, when
restart, the software would judge whether Ai has been completed, if yes, it will recover to the state
after Ai being completed, else then recover to the state before Ai beginning. Information user inputted
will be restored at the same time, and if failed to save, prompt the user.

This principle is good to avoid business interruption, service suspending, data losing and so on,
which are caused by system restart due to external factors, so that, the security, environmental
adaptability and user friendiness of the software are improved. The principle is especially applicable
to the service or software which have longer business process, more input information, larger amount
of data processing, and have a higher requirement for continued running.

Testing Method. Design test case Ui for each activity Ai: i) Implement Ai, completing all
operations of Ai, then restart the system, when the software starts-up again, judging whether it jumps
to the state that Ai completed. If not, the test is not through; ii) Implement Ai, shut down the system in
the process of inputting information, when the software starts-up again, judging whether it jumps to
Ai and preserves the information inputted, or prompts user that preservation of the information is not
successful, if not, test is not through.

A1 Ai-1

Ai Ai+1

An

Begin

End

Fig.2 Activity Diagram of Software

Data Can Be Separated
Description. Data refers to which software need to load, input, store, output, including formatting

data and unformatted data. Data can be separated means that, the installation, uninstallation and
updates of software do not cause data loss or damage, data can be independently loaded, updated and
deleted.

Recognize operations relating to data, including software installation, start-up, update and
unloading, etc, forming operations set D, D = (D1, D2, D3, D4,..., Dn). Assume that D1 represents
software installation, D2 represents the software start, D3 represents software update, D4 represents
software uninstallation, Di(5≤i≤n)represents other data related operations.

D1 can be performed successfully without loading data; D2 can be performed successfully with no
data, prompting the user some function is not available without data; Implement D3 after loading data,
when the update is completed, loaded data can still be used; Delete data manually, perform Di

operations, prompting the user when the operation appears error because of data, but it will not cause
the software to collapse; Perform D4 operations, prompting the user whether to delete the related data,
user can choose according to need.

This principle can reduce the software errors caused by data unloaded, data updated or data errors,
it can also avoid data loss or irreversible phenomenon caused by the software errors, effectively
improving the reliability, maintainability, supportability, testability, safety and environmental

1549

adaptability of software. The principle is suitable for the software which need data or generate data
during installation and operation, especially suitable for those who have large quantity and continuity
of valuable data.

Testing Method. For the installation of the software (D1), start (D2), update (D3) and unloading
(D4) and other data related operation (Di), design test cases Ui: i) Perform D1, if the software prompts
the user must load data, else it is unable to complete the installation, test does not pass; ii) Perform D2,
if the software can't normally boot, test does not pass; iii) After loading data, implement D3, if no data
have been loaded after restart, test does not pass; iv) Delete data manually, perform Di, if software
appears mistakes, the test does not pass; Reload the data, performs Di, if software appears fault or is
unable to read data, test does not pass; v) Implement D4, if the software does not prompt user to
choose retain data, test does not pass; Choose to keep the data, finding whether data file is in relevant
path, if there is no file or the size of file is 0KB, not through the test.

Status Can Be Monitored
Description. Status is software running status, including the throughput of thread, the transaction

efficiency, professional parameters, such as the error logs. The setting of monitor items is closely
related to the software business logic. Status can be monitored means, status data of software running
can be able to grabbed and gathered, and can be centralized in the visualized interface in real-time,
when in case of congestion, service stopping, and other emergency, there will be alarming prompt for
user according to certain strategy.

In this way of warning or rapidly detecting the dangers, large area faults are effectively avoided.
This principle is applicable to those software who run continuously, have higher request for stability
and reliability [5].

Testing Method. First, list all monitoring items of software in set J, J = (J1, J2,..., Ji,..., Jn)(1≤i≤
n). For each Ji, design test case Ui: i) Run business functions corresponding to Ji frequently and vastly,
increasing the amount of data exchanged, and then observe whether Ji perceives or hints. If there is no
obvious change and prompt of Ji, test does not pass; ii) Stop service of Ji, observing monitoring item Ji,
if there is no alarm prompt, test does not pass.

Postscript

The design principles proposed in this paper come from the software engineering developments
practice, focusing on improving the quality of software. It provides new ideas for software design and
testing of reliability. In practice, it should be appropriate chosen combined with the specific
circumstances of the software, such as functional requirements, operating environment, importance
of the software and so on, to deal with the balance between efficiency and resource consumption.

Summary

This paper raised a group of software principles, which have higher operability and can improve the
robustness, reliability, maintainability, etc, of software, as well, the article give specific advices on
testing methods for each principle.

References

[1] Zhou Jian: Research on quantitative evaluation of software quality, University of Electronic
Science and Technology, (2007).

[2] Li Jian_hua, etc: Research on software measurement system and implementation method based
on process (Proceedings of 16th National Youth Conference on Communication).

[3] Huang Chao: Research on Software Reliability Modeling and prediction method based on Chaos
Theory, University of Science & Technology China, (2010).

[4] DoronA.Peled, Israel: Software Reliability Methods, China Machine Press (2012).

1550

[5] Zhou Ming_hui,etc: New thinking of software engineering based on big data, CCCF (2014).

1551

