
DCFF: a container forensics framework based on Docker

Du Jiang1, a, Wu Sheng1,b
1Chongqing University of Posts and Telecommunications, 2 Chongwen road, Nan'an District,

Chongqing, China
aclouddu@163.com, bdylanwu123@foxmail.com

Keywords: container virtualization, cloud computing, cloud forensics, container forensics

Abstract. As a lightweight and flexible virtualization technology, container virtualization has been
adopted by more and more platform as a service (PaaS) system. With the popularity of container
virtualization and PaaS, cloud forensics need to find a way of extracting integrate and reliable data
from containers. In this paper, we propose a container forensics framework called DCFF which is
designed to acquire data simultaneously from containers running on different hosts and transform
forensics data into compatible format centrally.

1 Introduction

In recent years, with the development and maturation of container virtualization
technology(CVT) [1], more and more cloud service providers, such as Google, Microsoft, Amazon,
VMware and IBM, have supported this more flexible and efficient virtualization technology. And
many of the latest PaaS system, such as Flynn, Deis, Tsuru, Dawn, Octohost and so on, have built
their infrastructure base on Docker [2]. It’s easy to tell that CVT is playing a very important role in
the field of PaaS.

With the popularity of CVT and PaaS, cloud forensics science needs an answer of how to extract
integrate and reliable data from containers. Now, container forensics is mainly facing the following
problems.

1) No theoretical framework for container forensics. The widespread application of virtualiztion
and cloud computing tech, has coursed the highly attention of experts and professionals in digital
forensics field. And now we have many theory and method of virtualzation forensics, but all of
them is built on hypervisor vitualzation tech (HVT), instead of CVT.

2) Live forensics. Because CVT is mostly used for cloud service, just like HVT, we cannot just
shutdown the container and take their data. Container forensics must be capable of acquiring data
from a running container. And the target container should not be able to notice the operation of
digital forensics.

3) Container forensics for multiple hosts. As a lightweight virtualization technology, CVT is
widely used to construct PaaS platform. But unlike IaaS, PaaS can run on multiple independent
hosts, even if hosts from different service provider. And that requires container forensics be able to
not just acquiring data from containers in one host, but also managing the forensics process on
multiple hosts.

4) Forensics data compatibility. Like other virtualization technologies, CVT saves container data
in image of proprietary format. But an exclusive image file is not useful to the follow-up of data
analysis. So container forensics not only means extracting data from the container, but also
transforming data into a compatible format.

For solving these problems, we propose DCFF which is able to acquire data simultaneously from
containers running on different hosts and transform forensics data into compatible format centrally.

2 Analysis of related work

The development of virtualization technology has brought new challenges to the traditional
digital forensics field. The subject of digital forensics changes from physical machine to VM(virtual
machine), from hardware storage device to VM file. Now, with the virtualization and cloud

3rd International Conference on Materials Engineering, Manufacturing Technology and Control (ICMEMTC 2016)

© 2016. The authors - Published by Atlantis Press 1644

computing tech working more closely [3], forensics targeting virtualized environment has became a
crucial part of cloud forensics [4].

Dr. Zhou Gang of the Huazhong University of Science and Technology presented a cloud
forensics method base on scene migration [5]. The method takes VM instances as the forensics
subject. When there is a forensics demand, VM instances will be migrated completely to local
server. Then, it use traditional forensics tools to handle VM instance locally. The problem with this
method is that the migration process could last a very long time, and the VM instance in migratory
status may not work properly. In addition, this method requires a very powerful local server or
server cluster when dealing with multiple forensics assignments.

XIE Ya-long, DING Li-ping et al proposed a cloud forensics framework under the IaaS mode
(ICFF) [6]. By installing an EC (evidence crawler) in VM instance and a real time process monitor
in hypervisor, ICFF can acquire VM’s data at the first moment when any irregular process or log
entry occurs. However, subject VM in this framework is modified in advance which is not
acceptable to it’s user, and when the EC is compromised ICFF can get nothing but limited process
information from the VM.

Patrick Tobin and Tahar Kechadi et al presented a VM forensics method [7] that can collect data
of remote VM in local machine. The core idea is to build an duplicated VM instance in the local. So
every data that should be extract from the remote VM can also be acquired locally. In order to
achieve that, they need kernel hook in remote VM and VM introspection tools in remote
virtualization environment to grab real time data of VM instance. With the data saving every thing
happens in remote VM, they can replay the exact change in source VM in chronological order by
using injected code. What they have presented is a novel idea, but again, modification of VM is not
acceptable to it’s user. And a regular security update may be able to fail the code injection.

3 System design

3.1 Docker introduction
Docker is a senior container engine developed by dotCloud. It has three core concepts: container,

layered image, Docker Hub. Container is isolated, virtualized environment built from layered image.
And the layered image could be shared all over the world through Docker Hub.

For Docker, a container is a dynamic image, and an image is a static container. When we use a
image to create a container, Docker will create a r-w(read-write) image layer for the container. Any
changes in the container will only affect the r-w image layer. So that, when we want to acquire the
container’s files, all we need to do is making a copy for the r-w layer. The relationship between
container and layered image is shown in Fig. 1. Currently, Docker uses AUFS(Advanced Union File
System) [8] in Ubuntu OS to construct the layered image system, while it’s thin provision snapshot
strategy of device mapper [9] in non-Ubuntu OS.

Layer0(ro)

Layer1(ro)

Layer3(rw)

Layer2(ro)

Image1

Layer2(ro)

Layer1(ro)

Layer0(ro)

Container

Create

Layer3(ro)

Layer2(ro)

Layer1(ro)

Layer0(ro)

Image2

Create

Fig. 1

Layered image is a solution for data sharing between different images, while volume is a means
for different containers. A volume can be mounted by more than one container, it’s can be a volume
container, a host directory, or even a host file. Volume is completely independent from container
that no image created from container would include any data in volume. Still, volume is a very
important bridge, even a data vault for container.
3.2 Framework

This paper presents DCFF that can acquire data from a running container and convert the data to

1645

compatible image file. As shown in Fig. 2, DCFF mainly consists of 7 modules in three parts,
including: forensics controller, image converter and forensics image pool in forensics control center;
agent manager, container information collector, container relationship analyzer and container
camera in forensics agent; local Docker registry.

Forensics
Agent

Local
Docker

Registry

Docker
Host

Agent
Manager

Container
Information
Collector

Container
Relation
Analyzer

Container
Camera

Docker
Deamon

Docker
Deamon

Forensics
Control Center

Forensics
Image Pool

Image
Converter

Forensics
Controller

Investigator

Fig. 2

Forensics control center(FCC). FCC controls forensics task on all the Docker host. Data from
different host will converge on FCC and be transformed into compatible forensics image file. The
investigator can order forensics assignment of every container runs on every host through FCC.
Each order can include more than one container forensics command. And if the order involved with
multiple containers on same host, that means data acquired from these containers is what they are
like at the same time point.

Forensics agent(FA). Forensics agent is forensics agency unit that working on the Docker host. It
can receive and respond to commands from FCC. The major functions of FA is saving containers
into container images, getting the runtime state information of containers and acquiring volume
used by containers. FA will push container images to LDR, while sending container’s runtime state
and volume to FCC.

Local docker registry(LDR). LDR [10] is a private Docker image platform similar to Docker hub,
which can be used for image forwarding. What actually forwarded through LDR is image layer. So
if we have two images sharing same layers that need to be transmitted, we don’t have to repeat the
transmission for the same layers. Using LDR can greatly improve the image transmission efficiency
between local machines.

Docker deamon. Docker daemon is a Docker architecture that runs in the background, through
which we can use the services provided by Docker.
3.3 Forensics control center

FCC runs on Ubuntu OS, using layered image conversion method base on AUFS to implement
container image transformation. Forensics data from all the host is encrypted and stored in here.
FCC contains three modules respectively. They are forensics controller, image converter, forensic
image pool.

1) Forensics controller(FC). As the investigator interface and container forensics control unit,
FC can do Docker host keeping alive, information query, forensics command distribution, forensics
data process, forensics image export and deletion.

Docker host keep alive: FC maintains an online host list inside, when it is running. The online
host list consists of IP address, domain name, OS information and Docker version of every working
host. When FC starts, it broadcasts a request for keep alive package including host’s information.
Then the same package is transferred between FC and Docker host periodically. And if FC doesn’t
receive any message from a Docker host in a specific cycle, it would delete the host from online
host list, and it wouldn’t contact the host until the host start sending keep alive package again.

Information query: As long as the investigator needs, FC could send info query to every host in
online host list and display all the data returned. That means except information in online host list,
FC is able to reach the detail about all the containers running on online hosts. Besides that, FC can

1646

also search and display container forensics record and local forensics image information.
Forensics command distribution: Forensics command from investigator may involve containers

from different hosts. Before sending command to any host, FC need to verify if these containers or
hosts are existing, than it can divide the command by host unit and send the divisions to different
hosts.

Forensics data process: Forensics data from all hosts are brought together in FCC. And it is FC’s
job to turn those data into compatible forensics image. Now, we have image converter to do the
transformation for single container, but still, data from different containers need to be distinguished
decently. So what FC does here is to separate the data of each container from others’, invoke image
converter to complete the format conversion, and update the forensics and image records.

Forensics image export and deletion: FCC keep forensics images in a place where no one other
than FC and IC can reach directly. So it’s very important to create an access for investigator.
Through FC, investigator can delete or export existing forensics images in FCC.

2) Image converter(IC). IC is responsible for transformation from forensics data to forensics
image. And there are 3 parts in the convert process, which are reconstruction of container’s root file
system, putting container’s volumes, runtime state info and root file system in a directory as
indicated in Fig. 3, turn the directory into a ISO image file with the same name.

As we know, Docker uses two strategy to build layered image system for different type of OS.
But luckily, with the participation of LDR, we don’t have to worry about which container comes
from which kind of OS. We just need to focus on one strategy, and recover the root file system on
our own.

AUFS is a much easier way to build a layer image. And that’s why we choose the Ubuntu OS to
run FCC. Docker marks the layer relationship of images in it’s root directory, and that’s where we
can find the answer for how to construct container’s file system.

Volumes come from Docker hosts is concealed in image files. We need to mount they straightly
in the directory which shown in Fig. 3.

rootfs/

Container running state data

Volumes used by the container

$(Domain name of docker host)-$(Name of container)-
$(The execution time of forensics)

Fig. 3

3) Forensics image pool(FIP). FIP is an encrypted data base storing forensics image of
containers,. It accepts access from FC and IC only.
3.4 Forensic Agent

Forensic agent(FA) is installed on Docker host, mainly responsible for the data acquisition of
local containers. There are three kinds of data that FA would gather for FCC. The first is the
container image created from the root file system of the target container. The second is the volume
which is being used by the target container. And the third is the runtime state info of the target
container.

However, there are two routes for the travel of containers’ data. The volume and the running state
info will be digested, encrypted and sent to FCC directly, while container images is sending to LDR.
And since the LDR wouldn’t repeatedly transport the same image layer, forwarding images though
LDR is a more efficient way for the framework.

There are 4 modules works on FA. They are agent manager, container information collector,
container relation analyzer and container camera.

1) Agent manager(AM). AM is the control unit of the FA, it sends the keep alive package to the
FCC periodically, and responds to the forensics command form FCC.

Docker host keep alive: Once receiving the keep alive request from FCC, AM gains host info
from container information collector, and creates a keep alive package for delivering it to FCC. The
package includes IP address, domain name, OS version, Docker version. The keep-alive mechanism

1647

works mutually. When sending the keep alive package repeatedly, AM is expecting the same
package could be returned from FCC. If AM didn’t receive the keep alive package from FCC in a
specific time window, it would presume that the AM is down and suspend FA until receiving FCC’s
keep alive request again.

Information query response: AM has the obligation to update local container information to FCC
after receiving a information query. It could gets ID, name, start command, created time, status,
boot image and port mapping of local containers from container information collector and send
them to FCC.

Forensics command response. After receiving forensics command from FCC, AM will start the
digital forensics of target containers. The work flow of container forensics is shown in Fig. 4. It

①includes 6 steps: Sending target list(list involving target containers) to container relation analyzer;
② Getting pause list(list involving container that need to be paused during forensics), V/C
table(table involving relationship of container and volume) and volume directory from container

③relation analyzer; Sending target list, pause list and volume directory to container camera;
④ Receiving forensics execution time, container images, volume images and target container’s
running state from contain ⑤ ⑥er camera; Pushing the container image to LDR; Digesting and
sending forensics execution time, volume images, V/C tables, target container’s runtime state to
FCC.

Forensics
Control Center

Agent Manager

Container
Relationship
Analyzer

Container Fixer

①

②

③

④

⑥ Local Docker
Registry

⑤

Fig. 4

2) Container information collector(CIC). CIC provides info query service for other module on
FA. It maintains Docker and container configuration tables internally. By using file monitor strategy,
These tables can be updated immediately when any changes happen. The work procedure of CIC is
shown in Fig. 5.

Start
Locate docker
configuration

files

Files
changed？

Update tables

Initialize
internal docker

table &
container config

tables

Set up signals

Get request？

Return
information base
on the request

Signal

Module suspend

Module suspend

YY

NN

Fig. 5

3) Container relation analyzer(CRA). Since one volume can be mounted in different containers.
CRA needs to find out what other containers are using the same volume or where is the volume’s
location. The work procedure of CRA is shown in Fig. 6.

1648

Start

Receive target
list

Add current
target container
into pause list

If target
container use
any volume

Update volume
path table and

V/C table

If volume is
Used by any non-
target container

Add all non-target
Containers into

pause list

Return all the
table/list

If all target
containers has

been checked out

Set first
container in

target list as
current target

container

End

Set next
container as

current target
container

Y

Y

Y

N
N

N

Fig. 6

4) Container camera(CC). CC takes charge of container data immobilization. It preserves
container data of a certain time by memorizing containers’ runtime state and creating images from
containers and volumes.

There are 4 steps in CC’s procedure, which is container pausing, data storing, container
unpausing and data submission. Firstly, CC pauses all the container in pause list which is sent from
AM. Then, it invokes Docker API to get target containers’ runtime state and build layered images
for target containers. During this time, CC also creates ISO images from volume directory and
memorize forensics execution time. After that, CC will unpause all containers that is paused
previously. And finally, CC will submit all the data it got to AM.

4 Conclusion and future work

With the widely deployment of containers and PaaS in public and private cloud, it is becoming
increasingly important to produce a theory for forensics of container in PaaS. The container
forensics framework we proposed in this paper has considered the circumstance of multiple hosts,
which means it can be effective to containers not just on one machine, but also on PaaS platform.
The way we treat the container and the forensics data is very different from the existing
virtualization forensics. DCFF can extract data from a running container without letting it knows
and send those data to forensics center in a low-cost way. The strategy here is also very convenient
to investigators and hosts. Because the investigator can operate on single node and the host doesn’t
need to do any unnecessary work. In the future we plan to study a PaaS forensics framework with
stronger compatibility base on DCFF.

References

[1] Dua Rajdeep, Raja A Reddy, Kakadia Dharmesh, Virtualization vs containerization to support
PaaS[C], IEEE International Conference on Cloud Engineering, 2014, pp 610-614.

[2] Anderson Charles, Docker[J], IEEE Software, May 2015,pp 102-105.

[3] Ding, Weimin, Ghansah Benjamin; Wu Yanyan, Research on the Virtualization technology in
Cloud computing environment[J], International Journal of Engineering Research in Africa, 2016,
vol. 2, pp 191-196.

[4] Keyun Ruan, Joe Carthy, Tahar Kechadi, Mark Crosbie. Cloud Forensics[J]. IFIP Advances in
Information and Communication Technology, 2011, vol. 361, pp 35-46.

[5] ZHOU G. Research on Scene Migration of Computer Forensics in Could Computing
Environment[D]. Wuhan: Huazhong University Science and Technology, 2011.

[6] XIE Ya-long, DING Li-ping, LIN Yu-qi, ZHAO Xiao-ke. ICFF: a cloud forensics framework
under the IaaS model[J], Tongxin Xuebao/Journal on Communications, May 2013, pp 200-206.

1649

[7] Patrick Tobi, Tahar KechadiVirtual, Virtual machine forensics by means of introspection and
kernel code injection[C], 9th International Conference on Cyber Warfare and Security, 2014, pp
292-298.

[8] AUFS, http://http://aufs.sourceforge.net.

[9] Device-mapper, http://sourceware.org/dm

[10] Docker Registry 2.0, https://github.com/docker/distribution.

1650

