
The minimum distance diagram and diameter of undirected double-loop 
networks 

Ying Li 1, a , Yebin Chen2, a, Weipeng Tai 2, a , Renwei Wang 2, a 
1 School of Science and Engineering, Ma’anshan Teacher’s College, Ma’anshan Anhui, 243041, 

China 
2School of Computer Science, Anhui University of Technology, Ma’anshan Anhui, 243002, China 

acyb7102@163.com 

Keywords: undirected double-loop networks; minimum distance diagram; shortest path; optimal 
network. 

Abstract.  This thesis proposes a minimum distance diagram of undirected double-loop, which 
makes use of the cyclic graph's excellent properties on the node number and path length to achieve 
high performance. Main issues include the method to build the minimum distance diagram of 
undirected double-loop networks, the algorithm to calculate its diameter, and the step to build 
optimal undirected double-loop networks, etc. We prove that the diameter of the undirected 
double-loop network is equal to the height of its tree structure, and propose a rapid algorithm to 
calculate the diameter, and find that there are lots of optimal undirected double-loop networks in 
some infinite clusters. Finally, the lower bound proposed by Yebra is verified by experiment. 
According to these results above, the transmission performance of undirected double-loop will be 
optimized. 

Introduction 
The double-loop network which has symmetry, simple structure, easy scalability and strong fault 
tolerance, is easy to be constructed and widely used. High reliability of double-loop Networks is 
closely related to the network transmission delay, which is relevant to the network diameter and its 
routing algorithm, the shorter diameter brings about the less transmission delay, and the better 
routing algorithm will get the shortest path between any two nodes. So, how to choose the proper 
steps to decrease the diameter, how to design the optimal routing algorithm, these issues are worth 
to study. 

According to the principle of communication that shorter diameter means less delay. Suppose an 
undirected double-loop network G(N; ±r, ±s) has a limited diameter d(N; ±r, ±s), denote D(N) = 
min{ d(N; ±r, ±s): 1 ≤ r ≠s < N}, Wong et al. [1] gave the lower bound of D(N), that is D(N) 

≥ 2/)32( −N . Later, Yebra et al. [2] adjust D(N) ≥ 







−− 2/)112( N . If D(N) obtains the minimum value 

(the lower bound), then we call G(N; ±r, ±s) as optimal undirected double-loop network. A problem 
is that for a double-loop network with given N, how to calculate its diameter according to step r and 
s? In this field, Chen [3–5] and Fang et al. [6–8] have done a lot of work and have made plenty of 
valuable achievements. Our further study is on the basis of results which researched by Chen et al. 
who had described the diameter upper bound of the undirected network G(N; ±1, ±s), they also 
presented the formula of diameter about the undirected double-loop network G(N; ±1, ±s ), which 
can compute the diameter of undirected double-loop network whose the first step is 1, but it did not 
resolve the information routing problem, the same applies to Fang , they are not universal. The 
method of this thesis is mapping the space structure of the undirected double-loop network to a 
plane tree structure and gives its minimum distance diagram, according to witch, we not only can 
compute its diameter but also can find the shortest path between any two nodes rapidly. 
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The minimum distance diagram 
Undirected double-loop network graph theory model is an undirected graph G(N; ±r, ±s) , whose 

each vertex i is denoted as 0, 1, ..., N – 1, and there are four undirected edges i →i + r (mod N) , i 
→i + s (mod N),  i →i + N – r (mod N) and i →i + N – s (mod N) denoted as [+r] edge, [+s] edge, 
[–r] edge and [–s] edge respectively, r and s are two natural numbers, and satisfy 1≤ r ≠s < N. Fig. 1 
shows the topology of undirected double-loop network G(14; ±3, ±4 ). For a given N, r and s can 
decide the structure of the undirected double-loop networks G(N; ±r, ±s), it also can determines its 
diameter and routing strategy. 

According to the symmetry of the double-loop network, the distance of node u to node v equals 
to the distance of node 0 to node v–u, therefore, we just pay close attention to routing strategies 
from node 0 to other nodes, and then we can know the whole routing table about this network. 
According to the above principles, the spatial structure of the undirected double-loop network G(N; 
±r, ±s) can be mapped plane structure as Definition 1. 

 
Fig. 1 The topology of undirected double-loop network G(14; ±3, ±4). 

Fig. 2 The tree structure of undirected double-loop network T(14; ±3, ±4). 
Definition 1 

Step1. Let node 0 as the root node of a tree put node 0 on layer 0, write it and its child nodes r, s, 
N–s, N–r to set U, put them on layer1 and construct the tree with five nodes as Fig.2 ;  

Step2. Take each child node i respectively to create its child nodes with the value of i + r (mod 
N) , i + s (mod N),  i + N – r (mod N) and i + N – s (mod N), if new child node have not appear in 
set U, then put it into U, otherwise abandon it, put these new nodes on layer 2 and construct child 
tree with these new nodes; 

Step3. Repeat Step 2 above until all nodes appears in this tree. 
The corresponding tree structure created by Definition 1 is denoted as T(N; ±r, ±s), which is the 

minimum distance diagram of undirected double-loop network. But no each G(N; ±r, ±s) has its T(N; 
±r, ±s) beside gcd（N , r , s）= 1. 
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As you can see in Fig. 2, the different step can create different tree to the same node N, so the 
different step also get different diameter to the same node N. How to make messages transfer more 
efficiently in double-loop network systems? This problem has been received considerable attention, 
and a great number of results have been reported in [9–13]. They are mainly concerned with 
directed double-loop network, Chen et al. [9] presented the [+1]-link-prior routing algorithm which 
was considered more efficient than others, Fang et al. [10] believed that the efficiency of the 
[+h]-link-prior routing algorithm would be higher, Chen et al. [11–13] proved that both 
[+1]-link-prior or [+h]-link-prior are the same in efficiency. The routing features of undirected 
double-loop networks are the same with directed double-loop networks. 

Fang et al. [14] studied the Cartesian coordinates by the minimum distance visiting mode forms 
an optimum graph G(N; ±r, ±s). By this graph according to whether source node and destination 
node lie in horizontal or vertical coordinate and the amount of fault nodes around them, the 
concepts of closing areas and escaping areas of faulty nodes are proposed. When escaping areas 
occur, there exists optimum routing paths from source node to destination node. Zhong Wei et al. 
[15] consider that the undirected double loop network G(N; ±r, ±s) is a Cayley graph with degree 
4.The relationship between the four parameters of the L - shape tile and the smallest non-negative 
solution and the smallest cross solution of the congruence equation xs1 + ys2 = 0 (mod N) is 
obtained. So the new diameter of G(N; ±r, ±s) can be represented by the four parameters of the L - 
shape tile. For all these different structure above can be used to resolve different problem, but tree 
structure has some features that other structure is not equipped with. 

Main results 
Definition 2. For a tree structure T(N; ±r, ±s), define the layer root node in as 0 layer, define the 

layer its child nodes in as 1(first) layer, define the layer first layer’s child node in as 2 layer, and so 
on.  

Lemma 1. The shortest path length from node 0 to node v is l, when the node v is located in l 
layer. 

Proof. According to the Definition 1and Definition 2, node v appears only once in T(N; ±r, ±s)，
and the distance from node 0 to node v is l. Suppose there is a path is from node 0 to node v, its 
length is c, and c < l, then node v must locate in c layer, it is incompatible with Definition 1. 
Therefore, the shortest path of node 0 to node v is l． 

Lemma 2. The necessary and sufficient condition starting from node 0 to node v ( 0 <v < N；x, y, 
m, n ≥0; x, y, m, n is positive integer) through x [+r] edges, y [+s] edges, m [–r] edges and n [–s] 
edges is v=xr+ys +m(N–r)+n(N–s)(mod N)． 

Proof. Sufficient condition: since v= (xr+ys +m(N–r)+n(N–s))(mod N), starting from node 0 
through x [+r] edges, y [+s] edges, m [–r] edges and n [–s] edges, it will reach the node v + kN, as  
v + kN (mod N)=v, so it will reach node v. 

Necessity condition：starting from node 0 through x [+r] edges, y [+s] edges, m [–r] edges and n 
[–s] edges to node v，then (xr+ys +m(N–r)+n(N–s))(mod N)= v+kN (mod N)=v，we have v= (xr+ys 
+m(N–r)+n(N–s))(mod N)． 

Theorem 1. The shortest path length l from node 0 to node v is equal to the layer c where the 
node v located in.  

Proof. Suppose v ≠ 0 ∈U (U={0,1 , ... , N – 1})，v = x1 [+r] + y1 [+s] + m1[–r] + n1 [–s] (mod N) 
(0 <v < N；x, y, m, n ≥0; x, y, m, n is positive integer)． 

The path from node 0 to the node v in 1 layer passes 1[+r] or 1[+s] or 1[–r] or 1[–s] when node v 
located in T(N; ±r, ±s). Apparently, the shortest path length is l=c=1． 

When node v located in the layer 2 in T(N; ±r, ±s), the path from node 0 to the second layer 
nodes are one of 2[+r] or 2 [+s] or 2 [–r] or 2 [–s] or 1[+r] + 1[+s] or 1[+r] + 1[–r] or 1[+r] + 1[–s] 
or [+s] + [–r] or 1[ + s] + 1[ –s] or [ – r]+[ –s], obviously, the shortest path length is l= c =2． 

Suppose node v located in the c layer, Theorem 1 is correct, that is l= c．When node v located in 
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the c+1 layer，according to Definition 1, the lower nodes of T(N; ±r, ±s) are their child nodes of the 
c layer，from v to its child node only passes 1 [+r] or 1 [+s] or 1[–r] or 1[–s], so the path length 
from node 0 to node v is the c plus 1, that is l= c+1． 

According to the mathematical induction, the Conclusion set up. 
Theorem 2.The diameter d(N; ±r, ±s) of the undirected double-loop network G(N; ±r, ±s) is 

equal to the height of T(N; ±r, ±s)． 
Proof. According to the definition of the diameter, the diameter d(N; ±r, ±s) of G(N; ±r, ±s) 

equals the maximum distance of root node 0 to any other nodes in T(N; ±r, ±s). The distance of root 
node 0 to nodes in the last layer is the maximum distance in T(N; ±r, ±s), so the diameter d(N; ±r, 
±s) of  G(N; ±r, ±s) is equal to the distance of root node 0 to nodes in the last layer. According to 
tree theorem, the height of tree is equal to the last layer of tree, so the diameter d(N; ±r, ±s) of the 
undirected double-loop network G(N; ±r, ±s) is equal to the height of T(N; ±r, ±s)． 

Definition 3. Given three parameters N, r and s (1 ≤ r < s < N), let r = 1; when the range of s is 
from r + 1 to N − 1, we can get a group of undirected double-loop networks G(N; ±r, ±s) which is 
called an infinite cluster. 

The algorithm to calculate diameter 
Given N, r and s in a G(N; ±r, ±s), how to construct its corresponding tree structure rapidly is the 

chief problem to be settled. By Theorem 2, if we get the height of T(N; ±r, ±s), we also get the 
diameter of G(N; ±r, ±s), a rapid algorithm is provided as follow. 

Algorithm. 1: Step 1. Initialization: For give N, r and s, the root node is 0，its child nodes are r, 
s, N–r, N–s, they are in the first layer, insert them into the linear list l1 , and put all these nodes into 
the set U, so U={0, r, s, N–r, N–s }, let layer = 1, l2 is null; 

Step 2. Get every node i from the linear list l1 in turn, construct its child node with the values of 
i + r (mod N), i + s (mod N), i + N – r (mod N) and i + N – s (mod N), if its child node have not 
appear in U, then put it into U, and insert them into the linear list l2, otherwise do nothing, layer++; 

Setp 3. Delete all nodes from l1, then insert all nodes from linear list l2 to linear list l1, empty the 
linear list l2, repeat Step 2 until there is not any new node in linear list l2; 

Step 4. Output layer, which is the diameter d(N; ±r, ±s) of the undirected double-loop network 
G(N; ±r, ±s)． 

Experimental results 
For these networks G(N; ±r, ±s) with same node N, there are different diameters d(N; ±r, ±s) for 

different step r and s. For a G(N; ±r, ±s), if its diameter satisfies d(N; ±r, ±s)= lb(N) = 







−− 2/)112( N

（  x  is the smallest integer not less than x, it ) is called optimal network. How to find steps for 
optimal network? What is the distribution characteristics for these optimal networks and the d(N; ±r, 
±s) of an infinite cluster? All these answers will be found by simulation experiments. Some 
computer simulation and experiment results are presented in Fig. 3 (a), (b). 
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(a) G(60; ±1, ±s) 

 
 (b) G(61; ±1, ±s) 

Fig. 3 the distributions of diameters in infinite cluster 
Fig. 3 (a), (b) represent some infinite clusters, e.g. G(60; 1, s) and G(61; 1, s). Through these 

experiment results, we will verify some theories above and get more conclusions as follows: 

(1) For any undirected double-loop network G(N; ±r, ±s), the conclusion lb(N)= 







−− 2/)112( N  

proposed by Yebra is correct, see Fig. 3 (a) , (b), lb(60) =5, lb(61) = 5. 
(2) For any infinite cluster of undirected double-loop network G(N; ±r, ±s), the distribution of 

diameters is an axis-symmetrical figure, the maximums always located in the center of symmetry 
and two borders. 

(3) There are two optimal networks in an infinite cluster, see Fig. 3 (b), such as G(61; 1, 10), 
G(61; 1, 50), they always appear in pairs. But not all are like that; see Fig. 3 (a). 

Conclusions 
Double loop structure is not only good for most of the problems, but also their defects. This 

paper use undirected double-loop network in the node degree, network diameter and optimal 
networks properties etc. Firstly we studied its topology and mapped it to tree structure, so we got 
the minimum distance diagram, and then we got related algorithm about diameter, finally we found 
some optimal networks in an infinite cluster through experimental result. But how to get suitable 
steps to construct optimal network, what is the distribution characteristics for these optimal 
networks, these problems will be the primary problems for we to resolve. 
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