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Abstract. According to the nonlinear problem of the trajectory optimization problem of rocket 
projectile, an improved optimization algorithm combined the direct model parameterization method 
and the sequential quadratic programming method was proposed. The direct numerical method was 
presented to converts the infinite dimensional optimization problem into a finite dimensional 
nonlinear programming problem. The improved sequential quadratic programming algorithm was 
derived by making a special treatment on the constraint conditions. Taking the range as the 
independent variable instead of the time, and taking the maximum range trajectory and the shortest f 
time trajectory as the function of the performance index respectively, the trajectory optimization 
model was presented, and the numerical simulations were carried out. The results show that the 
proposed algorithm is effective to solve the trajectory optimization problem. 

Introduction 
Generally speaking, it is difficult to solve the trajectory optimization problem of rocket projectile 
for its nonlinear characteristics by the analytical method, and the numerical method has become the 
main algorithm to solve it. The numerical method includes indirect numerical method and direct 
numerical method [1] [2]. The indirect numerical method takes the variation method to search the 
first order necessary conditions, which can obtain the extremum for the optimization problem. 
Those first order necessary conditions are usually in the form of two point boundary value problems 
that described as a set of differential and algebraic equations. The system state, the control input and 
the parameters satisfy the two point boundary value problem by the numerical calculation, and then, 
the optimal solution of the optimization problem can be obtained. But it needs to introduce the 
co-state variables and the co-state equations in the process of the derivation of the necessary 
optimal conditions. It is difficult to obtain the initial estimates of the co-state variables, which has 
huge impact on the two point boundary value problem solving. Avoiding the tedious derivation of 
the formula and the co-state variables initial value estimation problem of the indirect numerical 
method, the direct numerical method can converts the infinite dimensional optimization problem 
into a finite dimensional nonlinear programming problem. It will make the control optimization 
problem solving more suitable for the characteristics of digital computers, and easier to achieve. In 
this paper, an improved optimization strategy combined the direct parameterization method and the 
SQP (Sequential Quadratic Programming) method [3] is presented to solve the trajectory 
optimization problem of rocket projectile. 

Optimization Algorithm 
Mathematical description 

Essentially, the trajectory optimization problem of rocket projectile can be abstracted as an 
optimal control problem, and its purpose is to get the control law of a given system, which makes 
the system have optimal solution under given conditions of some specified performance indexes. In 
a general way, the optimal control problem can be described as equation (1). 
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Where, mt Rx ∈)(  is the state variable; t  is the time variable, 0t  and ft  are the bounds; 
),,,( tJ pux  is the object function, which consists of terminal penalty term )),(( f px tΦ  and integral 

term ),,,( tL pux ; ),,,( tpuxfx =&  is the state equation; cnt Rpuxc ∈),,,(  is the equality constraint 
function; dnt Rpuxd ∈),,,(  is the inequality constraint function; 00 )( xx =t  is the initial state; 

Ynt RpxY ∈)),(( f  is the terminal equality constraint function; Gnt RpxG ∈)),(( f
 is the terminal 

inequality constraint function. 
Equation (1) describes an optimal control problem with confirmed initial and terminal states, 

which can take the unknown terminal state as the parameters to be optimized by the time variable 
standardized. The trajectory optimization problem of rocket projectile has the above characteristics, 
so it can be described as equation (1) that abbreviated as OCP (Optimal Control Problem). 

Direct parameterization 
Generally, the OCP is infinite dimensional optimization problem. In order to solve it by the 

direct numerical method, it needs to be parameterized firstly. The parameterized process can be 
described as follows: 

(1) Divide the fixed time interval into N  sub intervals, and ],[ 0 ii tt∈t , N,,2,1,0 L=i , fN tt = ; 
(2) Take control input )(tu  as )N,,1,0( L=iiu  corresponded to 1N +  time nodes. 

),,,,()( N10 ii IU ττ uuuu L=  is the interpolation function about the parameter iu  and the time iτ . 
(3) Take the 1N +  state estimates as n

i Rs ∈ , N,,2,1,0 L=i . 
The state of every sub interval can be transformed into initial value solving problem. Equation (1) 

can be converted into a finite dimensional optimization problem described as equation (2). 
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Introduce a new variable )(ty : ),,,( tLy pux=& , and )0( 0 =ty . Make the control input ),(~)( tt iuxx = , 

the equality constraints Yc nn ++∈ )1N(Rg , and the inequality constraints Gd nn ++∈ )1N(Rh  discrete respectively. 
And then, the OCP can be converted into finite dimensional parameters nonlinear programming 
problem that abbreviated as NLP (Nonlinear Programming), which described as equation (3). 











=
=

0)~(
0)~(

s.t.
)~(min~

uh
ug

u
u

J

                                     (3) 

1752



 

Improved Sequential Quadratic Programming 
In spite of all the equality and inequality constraints are considered by SQP, the K-T conditional 

form of the SQP sub problem is complex and difficult to solve without taking special treatment on 
the inequality constraints. The improved SQP combined the direct model parameterization with 
sequential quadratic programming can be used to solve the inequality constraints of the NLP: at 
each iteration point, set the known feasible point as the starting point, take the working inequality 
constraints as equality constraints, don’t take care of the rest of the inequality constraints, and after 
a better feasible point obtained, repeat the procedure. 

Firstly, considering all the not satisfied inequality constraints are working, add them to the 
equality constraints, form a new sets, and then equation (3) can be represented as equation(4). 
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Where, gnR∈)~(ug , gn  consists of )1( +Nnc , Yn  and the working inequality constraints. 
Secondly, the SQP sub problem corresponding to equation (4) can be described as equation (5). 
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The Lagrange function ),~( luL  can be described as equation (6). 
)~()~(),~( T uglulu += JL                                 (6) 

The K-T constraint ),~( luL  can be described as equation (7). 
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Mark the solution of equation (7) as ),( ~
k

k ld
u

. If 0~ =ku
d , ku~  is the approximate value of the 

optimal solution of the NLP problem, else, take one dimensional linear search along the direction of 
ku

d ~  as k
kk

u
duu ~

1 ~~ σ+=+ , where, the step factor ( ]1,0∈σ  should satisfy the constraint that 1~ +ku is a 
better solution compared to ku~ . Repeat the procedure until the convergence conditions are satisfied. 
Penalty function as equation (8) is used for the one dimensional linear search to determine the step 
factor. 
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Where, ),~(),~( 1 ruru +> kPP . 
The penalty factor that should be positive can be described as equation (9). 

))(5.0,max( ∗+= iiii rr λλ                           (9) 

Where, iλ  is the corresponding factor of the Lagrange factor; ∗
ir  is the penalty factor of the 

previous iterative computation. 
A positive definite matrix kB  that can be solved by MNFGS (Modified Broyden Fletcher 

Goldfarb Shanno) algorithm [4] as equation(10) is normally selected as substitute for Hessian kH , 
which is cannot guaranteed as positive definite matrix and difficult to solve. 
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Where, uL~  is the derivative form of Lagrange function to u~ . 

Trajectory Optimization Model 
Considering the general gliding flight process of the rocket projectile, in order to grasp the main 

aspects of the trajectory optimization problem, set the detection and control systems are ideal for 
work, the atmosphere is the Artillery Standard Atmospheric, the surface of the earth is plane, based 
on the Instantaneous Equilibrium Assumption [], take range x  as the independent variable to 
replace time t , and the trajectory optimization model of gliding extended rocket projectile can be 
described as follows: 

(1) The performance index of the maximum range trajectory is ))()(( 0f txtxJ −−= .  
(2) The state equations adopt the centroid trajectory model in the longitudinal plane. 
(3) The control variables are the elevation angle 0θ  and gliding attack angle α . 
(4) The initial state is the elevation state of the rocket projectile, and 00 =t . 
(5) The constraints are max00min0 θθθ ≤≤  and maxaa ≤ . 
(6) The terminal state are ff )( xtx =  and ff )( yty = . 
Therefore, the trajectory optimization model can be represented as equation (10). 
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Where, the symbolic meaning of the equation (10) is detailed in the literature [5]. 

Examples and Analysis 
Taking a certain type rocket projectile as an example, the initial simulation conditions are as 

follows: initial velocity m/s500 =v , initial weight kg1050 =m , engine impulse of solid rocket motor  
Ns/kg2600sp =I , propellant weight kg35p =m , engine working time s7pw =t , trajectory tilt angle 

)90,30(0
oo∈θ , attack angle constraints oooo 10,8,5,3max =a , height of point of fall m0f =y .  

Based on those assumptions, the results of the trajectory optimization are: the initial elevation 
angle o600 =∗θ , the trajectory summit time s5.56s =∗t , the trajectory maximum height m8.20537s =∗y . 
Corresponded to different attack angle constraints, the comparison results are shown in Table 1. 
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Table 1: The comparison results of different attack angle constraints. 
maxa /° ∗

ft /s ∗
fx /m ∗

fv /m·s-1 ∗
fθ /° Extended efficiency/% 

No gliding 143.7 32780.5 245.74 -83.30 — 
3 223.8 54444.7 174.50 -33.17 66.1 
5 296.9 66083.7 143.31 -28.35 101.6 
8 334.6 68781.0 113.78 -28.50 109.8 
10 338.7 68982.1 99.37 -28.74 110.4 

Compared with the conventional no gliding maximum range trajectory, the range of the gliding 
trajectory increased significantly. When o5max =a , the range increases about 12.5km than o5max =a , 
and when o8max =a , the range increase about 2.7km than o5max =a , but when o10max =a , the range 
just increases about 200m than o8max =a . It illustrates that when the attack angle constraint reaches 
a certain value, it cannot increase the range significantly continuously. The reason is the relative 
control ability is limited by the rudder deflection angle. 

Take the performance index ))()(( 0f txtxJ −−=  replaced as 0f ttJ −=  when solve the shortest 
flight time trajectory optimization problem. The results of three preset ranges are shown in Table 2. 

Table 2: Trajectory optimization results of different preset ranges. 
fx /km ∗

0θ /° ∗
pt /s ∗

pty /km ∗
ft /s ∗

ftv /ms-1 ∗
ftθ /° 

40 48.2 45.2 14.395 140.8 219.4 -38.2 
50 55.9 55.5 19.845 179.1 225.5 -41.6 
60 60.0 61.3 23.129 217.3 217.5 -38.1 

Table 2 illustrates that the elevation angle, the trajectory summit time, the trajectory maximum 
height, and the flight time increase as the preset range increases, but the velocity and trajectory tilt 
angle of the point of the fall are almost the same. 

Figure 1 and Figure 2 show the results of the trajectory optimization more directly. 
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Figure 1: The optimization results of maxa . Figure 2: The optimization results of fx . 

Summary 
An improved optimization algorithm is proposed to solve the trajectory optimization problem of 

gliding range-extended rocket projectile with nonlinear characteristics. The results show that the 
algorithm is suitable for the specific trajectory conditions of rocket projectile and effective for the 
computation of the trajectory optimization and the analysis of the trajectory characteristics 
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