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Abstract. Program checking is an interesting and challenging problem. Many kinds of programs 
can be formulated as polynomial programs, expressing the same meanings in a mathematical way. 
Moreover, with the mathematic framework of semi-algebraic systems, the polynomial based model 
checking can be applied directly and efficiently, as well as shows a good solution to reduce the state 
explosion problem. In this article, we show an easy way to translate the polynomial program into a 
semi-algebraic transition system, and then check the properties by computing the zeros. 

1  Introduction 

The design of reliable software is a grand challenge in computer science in the 21st century, as our 
modern life becomes more and more computerized [1]. One of the bases for designing reliable 
software is the correctness of programs [1], the needs from applications and reality of the researches 
make program verification both interesting and challenging.  

In this paper, we show the model checking procedure of polynomial program. Many kinds of 
programs can be formulated as polynomial programs, which expresses the same meanings in a 
mathematical way. Instead of only focusing on theorem proving, e.g. invariant generation in [2], our 
method is based on “algebraic” symbolic model checking [3, 4]. This article shows the 
semi-algebraic systems ( SASs ) can be applied to symbolic model checking of polynomial programs. 
The main idea is that the polynomial program is expressed as semi-algebraic transition systems 
( SATSs ) directly, the properties are translated into polynomials, and then the checking problem is 
concluded by finding the common zeros of the semi-algebraic systems restricted by the polynomials 
[3].  

The rest of this paper is organized as follows: Section 2 reviews the basic notations of symbolic 
model checking, semi-algebraic system and related knowledge are listed in section 3, section 4 
introduces polynomial programs and their formal representations, says transition system. Then in 
section 5, we shall propose a method for checking the polynomial programs, and we end in section 
6 with some ideas for future work.  

2  Symbolic Model Checking 

Model checking is a method for formally verifying finite-state concurrent systems. Specifications 
about the system are expressed as temporal logic formulae, and efficient algorithms are used to 
traverse the model defined by the system and check if the specification holds or not. The model 
checking algorithm, which is based on the manipulation of boolean formulae, is called symbolic 
model checking. The system model is represented by labelled transition systems, which are usually 
called kripke structures. 
Definition 2.1 (Kripke Structure) [13] Kripke structure is a tuple , 0, , , ,K S S R AP L   , where  

 — S  is a finite set state; 
— 0S  is the set of initial states; 

— R S S   is a transition relation; 
— AP  is a set of all atomic propositions and their negative propositions; 
— : 2APL S   is the labelling function. 
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Properties are specified by temporal logic, here we use the Computation Tree Logic (CTL ), 
which is a subset of modal branching time logic defined by Clarke and Emerson [5]. In CTL , 
temporal operators consist of A  or E ; followed by G (Global), F (Future), X (neXt), or U (Until). 
The syntax of CTL  formula is given as follows: 

1. Every atomic proposition is a CTL  formula. 
2. if f  and g  are CTL  formulae, then so are 

, , , , ( ), ( )f f g AX f EX f A f U g E f U g   

The other operators can be derived from these according to the following rules: 
(1) ( )f g f g     ; (2) ( )AF g A true U g ; (3) ( )EF g E true U g ; 

(4) ( )AG f E true U f   ; (5) ( )EG f A true U f   . 

Symbolic CTL  model checking is to check 0( [ , ])s S K s  ╞ p . The notation ,K s╞ p  means 

that the CTL  formula p  is true in state s  of kripke model K . 
Tarski verified that in lattice a monotonic function f  has a least fixpoint, denoted .x f  and s 

greatest fixpoint, denoted .x f . 

Theorem 2.1 For any Kripke structure 0( , , , , )K S S R AP L , there are 

1. .( );EF p y p EX y   2. .( );EG p y p EX y   3. ( ) .( ).E p U q y q EX y    

The other CTL  formulae can be derived from the above formulae. Then the CTL  operators can 
be characterize in terms of fixpoints of appropriate functions [3]. In the end, we need only to 
calculate the formula EX   to a formula   for fixpoint obtained by computing EX y iteratively.  

3 Semi-algebraic system 

In this section, we review the theories of semi-algebraic system[9]. 
 Let 1[ , , ]nx x   be the ring of polynomials in n  indeterminates, X= 1{ , , }nx x , with 

coefficients in the field  . Let the variables be ordered as 1 2 nx x x  . Then, the leading 

variable (or main variable) of a polynomial p  is the variable with the biggest index which indeed 
occurs in p [11]. If the leading variable of a polynomial p  is kx , p  can be collected w.r.t. its 

leading variable as 0
m

m kp c x c    where m  is the degree of p  w.r.t. kx  and ic s  are 

polynomials in 1 1[ , , ]kx x   . We call m
m kc x  the leading term of p  w.r.t. kx  and mc  the 

leading coefficient. An atomic polynomial formula over 1[ , , ]nx x   is of the form 

1( , , ) 0np x x  , where { , , , }     , while a polynomial formula over 1[ , , ]nx x   is 

constructed from atomic polynomial formulae by applying the logical connectives [11]. We will 
denote by 1({ , , })nPF x x  the set of polynomial formulae and by 1({ , , })nCPF x x  the set of 

conjunctive polynomial formulae, respectively. Moreover, we will use �  to stand for rationales 
and �  for reals, and fix   to be � [10]. 

In the following, the n  indeterminates are divided into two groups: u= 1( , , )tu u and 

x= 1( , , )nx x , which are called parameters and variables, respectively, and we sometimes use “,” 

to denote the conjunction of atomic formulae for simplicity [10]. 
Definition 3.1 [10] (Semi-algebraic system) A semi-algebraic system is a conjunctive polynomial 
formula of following from: 

         

1

1

1

1

( , ) 0, , ( , ) 0,

( , ) 0, , ( , ) 0,

( , ) 0, , ( , ) 0,

( , ) 0, , ( , ) 0.

r

k

k l

m

p u x p u x

g u x g u x

g u x g u x

h u x h u x


 
  
  
  









                                         (1)          
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where 1r  , 0l k  , 0m   and all ip s  , ig s  and ih s  are in [ , ] \u x� � . A SAS  of the 

form (1) is called parametric if 0t  , otherwise constant [10].  

4 Polynomial program and transition system 

A polynomial program comprises a finite set Proc of procedure names with one distinguished 
procedure Main [6], execution of which starts with a call to Main. But in this paper, we only 
introduce the flat program, that is to say, polynomial program has been synthesized firstly, as well 
as only one procedure will be considered (like in figure 1).                                           

The n-tuple X= 1( , , )nx x consists of the variables appearing in the polynomial program, one or 

many programs counter variables (“pc”) range over the program labels, and some common key 
words, e.g. “integer”, “if”, “then” and “while”, appear with their standard meanings like which in 
other programs. Now, let us introduce the rules of labelling polynomial programs. Let P be a 
polynomial program, and the labelled version is denoted by P . Then the rules of labelling the 
polynomial are like which in [5]: 

— If P is not a composite statement (like :x e ), then P P  .  
— If 1 2;P P P , then 1 2; ;P P l P   . 

— If P   if b  then 1P  else 2P  end if, then P   if b  then 1 1:l P  else 2 2:l P  end if. 

— if P   while b  do 1P  end while, then P   while b  do 1 1:l P  end while. 

— If P   begin 1 2 nP P P  end, then P   begin ' ' '
1 1 1 2 2 2: : :n n nl Pl l P l l P l  end. 

4.1 Semi-algebraic transition system 

Instead of representing polynomial program by control flow graph (like in [6, 7]), we formalize this 
kind of programs with transition systems, which facilitates the checking procedure better. 

Firstly, we rewrite the polynomial programs with command formulae [8]. Let us show this with 
the program in figure 1. The command formula c  of above polynomial program from line 3 to 4 
over variables x  is 

' '3 0 1 4
guard action

c pc x x x pc        
 

 

In a command formula, the subformula over unprimed variables 1, , nx x  forms the guard 

(enabling condition). The remaining conjuncts form the action (update of the variables). Usually, 
they are of the form 'x E , where E  is the update expression over unprimed variables 
(translating assignments :x E ). 

So the polynomial program could be given as a set C of command formulae.The translation from 
programs to sets of command formulae is standard for this kind of programming languages. 

Now we can get the semi-algebraic transition system (SATS) [1, 2] by command formulae 
directly. SATS is extended the notion of algebraic transition systems (ATS) [14], in which each 
transition is equipped with a conjunctive polynomial formula as guard, and contains both 
polynomial equations and inequations. 
Definition 4.1 (Semi-algebraic transition system) A semi-algebraic transition system is a 
quintuple , , , ,V L T l  , where V  is a set of program variables, L  is a set of locations, and L is 

a set of transitions [9]. Each transition T   is a quadruple 1 2, , ,l l    , where 1l  and 2l  are 

the pre- and postlocations of the transition, '( , )CPF V V   is the transition relation, and 

( )CPF V   is the guard of the transition [9]. Only if   holds, the transition can take place. 

Here, 'V  (variables with prime) denotes the next-state variables. The location 0l  is the initial 

location, and ( )CPF V  is the initial condition [9]. 
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For SATS , a state is an evaluation of the variables in V  and all states could be denoted by 

 Val V  [9]. Without confusions we will use V  to denote both the variable set and an arbitrary 

state, and use  F V  to mean the (truth) value of function (formula) F  under the state V . The 

semantics of SATSs  can be explained through state transitions as usual [9]. Then the polynomial 
program described in figure 1 could be translated into 

 P V x    0L l   1 2,T    

          Where 1 0 0: , , 1 0, 1l l x x x       

                     2 0 0: , , 2 0, 1l l x x x        

         100x    

For convenience, by ,
1 2l l   we denote the transition  1 2, , ,l l     , or simply by 

1 2l l  [9]. A sequence of transitions 1
11 12 1 2, , n

n nl l l l   is called compassable if 

 2 1 1i il l   for 1, , 1i n  , and written as  1 2
11 12 21l l l   2

n
nl

  [9]. A compassable 

sequence is called transition circle at 11l , if 11 2nl l . For any compassable sequence 
1 2

0 1
n

nl l l    , it is easy to show that there is a transition of the form 1 2; ; ;
0

n
nl l    

so that the compassable sequence is equivalent to the transition [1], where 
1 21 2 ; ; ;; ; ; ,

nn         

and 
1 2; ; ; n    are the compositions of 

1 21 2; ; ; , ; ; ;
nn           and 

1 2
; ; ;

n     , respectively. 

The composition of transition relations is defined in the standard way, for example, 
4 23; 2x x x x      is  24 3 2x x    ; while the composition of transition guards have to be 

given as a conjunction of the guards, each of which takes into account the past state transitions [12]. 
In the above example, if we assume the first transition with the guard 57x x  , and the second 
with the guard 4 3x x  , then the composition of the two guards is 

   45 4 47 3 3 3x x x x        [12]. That is to say, for any compassable sequence 

1
1 2 , , n

nl l l  , it is equivalent to the transition 1 2; ; ;
0

n
nl l    [1]. Moreover, according 

to the definition in [4, 5], the transitions in SATS  are compassable. 

Let us consider the SATS       2
0 1 1 0 1 2 1 0, , , , , 7, 5 , , ,P V x L l l T l l x x x l l           

 3
012, 12 , , 5x x x l x        [1]. 1 2

0 1 0l l l    is a compassable transition circle, 

which is equivalent to  32 2
0 0, , 7 12, 5 7 12l l x x x x         [1]. 

It is also convenient to add a set of polynomial to   to modify or restrict a transition  , 

sometimes. We can simply denote this by P   where P  is a polynomial set. Moreover, we also 
simply denote S P  for all transitions in SATS  S  restricted by set P . 

5  Checking polynomial program 

In this section, we propose a method to process the model checking polynomial programs. 

5.1 Polynomial semantics of CTL 

The first step to translate CTL  formulae into polynomials is how to deal with the quantification 
operators. Let   be a CTL  formula and the corresponding polynomial be � � , then 

Definition 5.1 (Polynomial semantics of quantification operators) Let   be a CTL  formula 

and 1, , nx x  be the variables involved in   in the field  , the quantification operators will be: 
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   1 1, , , ,
ii n n x l

l

x f x x f x x





 � �� � � �� � � � 

   1 1, , , ,
ii n n x l

l

x f x x f x x





  � �� � � �� � � � 

Then it is convenient to translate CTL formulae into their corresponding polynomial 
representations. 
Definition 5.2 (Polynomial semantics of CTL formulae) Let Kripke structure, the polynomial 
semantics will be: 
（1）� �,x x AP                （2）� � � �p                 （3）� � � � � �p       

（4）� � � � � �p             （5）       ,EX x x R x x x     � �� � � �� � � � 

（6）   � �pAX x EX   � �
� �    （7）   � � � �   p pE EX E        �� � � �� � ��  

（8）   � � � �     p p pA AX A EX A          � �� � � �  � �� � � ���  

 
 
 
 
 
 
 
 
 
 
              
 
                                                                                          
Figure 1 A program to multiply two numbers          Figure 2 Computing the fixpoint  

 
 

 

 

 
 
 
 
 
 
 

 
 

 
  

 

 

Figure 3 Model checking algorithm 

procedure fixpoint 
1 input 
2     polynomial program P  
3     LTL formula   

4     a map ': (1 )i if x x i n    

5 begin  

6     translate P into SATS , , , ,S V L T l   

7     translate  into polynomial set P  

8     'S S P   

9     computing the zero of 'S  
10  end 

1 integer 100x  ; 

2 while ( 0)x   do 

3     0 : ( 0)l if x   then 

4 1 : : 1l x x  ; 

5     else 

6 1 : : 2l x x   ; 

7     end if 
8 end while 

procedure Check( ,P R ) 

1 input 
2 polynomial program P  
3     LTL formula   

4     a map ': (1 )i if x x i n    

5 begin 
6     Case 
7     P AP ; Return P ; 

8     P   ; Return ( , )pCheck R ; 

9     P    ; Return ( , ) ( , )Check R Check R  ; 

10    P    ; Return ( , ) ( , )Check R Check R  ; 

11    P EX ; Return ( ( , ))EX Check R ; 

12    P AX ; Return ( ( , ))PEX Check R  ; 

13    ( )P E     ; Return ( , ( , ), ( , ))Quntil E Check R Check R  ; 

14    ( )P A    ; Return ( , ( , ), ( , ))Quntil A Check R Check R  ; 

15 end 
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5.2  Algorithms 

We have shown in the figure 2, the most complex and basic step for checking these programs is 
how to calculate the fixpoint, let us see the lemma below: 
Lemma 5.1 Given a SATS S  and a set of polynomials P  corresponding to the formula  , then 

there is a map  : 1i if x x i n    so that formula EX   represented by  S f P . 

Theorem shows that a fixpoint can be got by computing EX y  iteratively. Hence, a property 

can be translated into polynomials directly, and we use theories of semi-algebraic systems to 
calculate zeros of polynomials, which represent the fixpoint. The algorithm is shown in figure 3. 

Our model checking algorithms are the same as ones in [3, 4], which do polynomial based model 
checking by computing the fixpoints of polynomials set other than SATS . We do not list the details 
here to bother readers. 

6  Conclusion 

The polynomial program is a natural expression of some real system, especially while considering a 
system in terms of its performance. In this article, we propose a procedure of validating the 
polynomial program in a formal way. The basic idea is to convert the polynomial program into a 
semi-algebraic transition system, and then check the properties by the way of computing its zeros 
iteratively. In future, we would connect the tools listed in this article to make the validating 
procedure smoothly. 
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