

A Way of Validating Polynomial Program with Semi-algebraic System

Qinggeng Jin1, a, Lijuan Su1, b , Anping He1, c, * and Juxia Xiong1, 2, d
1Guangxi Key Laboratory of Hybrid Computer and IC Design Analysis, Nanning, China;

2Chengdu Institute of Computer Application, Chinese Academy of Science, Chengdu, China
ajinqinggeng@aliyun.com, b1151593068@qq.com, c, *dr.he@sohu.com, d287047039@qq.com

Keywords: Polynomial program, Semi-algebraic System, Symbolic model checking.
Abstract. Program checking is an interesting and challenging problem. Many kinds of programs
can be formulated as polynomial programs, expressing the same meanings in a mathematical way.
Moreover, with the mathematic framework of semi-algebraic systems, the polynomial based model
checking can be applied directly and efficiently, as well as shows a good solution to reduce the state
explosion problem. In this article, we show an easy way to translate the polynomial program into a
semi-algebraic transition system, and then check the properties by computing the zeros.

1 Introduction

The design of reliable software is a grand challenge in computer science in the 21st century, as our
modern life becomes more and more computerized [1]. One of the bases for designing reliable
software is the correctness of programs [1], the needs from applications and reality of the researches
make program verification both interesting and challenging.

In this paper, we show the model checking procedure of polynomial program. Many kinds of
programs can be formulated as polynomial programs, which expresses the same meanings in a
mathematical way. Instead of only focusing on theorem proving, e.g. invariant generation in [2], our
method is based on “algebraic” symbolic model checking [3, 4]. This article shows the
semi-algebraic systems (SASs) can be applied to symbolic model checking of polynomial programs.
The main idea is that the polynomial program is expressed as semi-algebraic transition systems
(SATSs) directly, the properties are translated into polynomials, and then the checking problem is
concluded by finding the common zeros of the semi-algebraic systems restricted by the polynomials
[3].

The rest of this paper is organized as follows: Section 2 reviews the basic notations of symbolic
model checking, semi-algebraic system and related knowledge are listed in section 3, section 4
introduces polynomial programs and their formal representations, says transition system. Then in
section 5, we shall propose a method for checking the polynomial programs, and we end in section
6 with some ideas for future work.

2 Symbolic Model Checking

Model checking is a method for formally verifying finite-state concurrent systems. Specifications
about the system are expressed as temporal logic formulae, and efficient algorithms are used to
traverse the model defined by the system and check if the specification holds or not. The model
checking algorithm, which is based on the manipulation of boolean formulae, is called symbolic
model checking. The system model is represented by labelled transition systems, which are usually
called kripke structures.
Definition 2.1 (Kripke Structure) [13] Kripke structure is a tuple , 0, , , ,K S S R AP L   , where

 — S is a finite set state;
— 0S is the set of initial states;

— R S S  is a transition relation;
— AP is a set of all atomic propositions and their negative propositions;
— : 2APL S  is the labelling function.

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0147

Properties are specified by temporal logic, here we use the Computation Tree Logic (CTL),
which is a subset of modal branching time logic defined by Clarke and Emerson [5]. In CTL ,
temporal operators consist of A or E ; followed by G (Global), F (Future), X (neXt), or U (Until).
The syntax of CTL formula is given as follows:

1. Every atomic proposition is a CTL formula.
2. if f and g are CTL formulae, then so are

, , , , (), ()f f g AX f EX f A f U g E f U g 

The other operators can be derived from these according to the following rules:
(1) ()f g f g     ; (2) ()AF g A true U g ; (3) ()EF g E true U g ;

(4) ()AG f E true U f   ; (5) ()EG f A true U f   .

Symbolic CTL model checking is to check 0([,])s S K s  ╞ p . The notation ,K s╞ p means

that the CTL formula p is true in state s of kripke model K .
Tarski verified that in lattice a monotonic function f has a least fixpoint, denoted .x f and s

greatest fixpoint, denoted .x f .

Theorem 2.1 For any Kripke structure 0(, , , ,)K S S R AP L , there are

1. .();EF p y p EX y  2. .();EG p y p EX y  3. () .().E p U q y q EX y 

The other CTL formulae can be derived from the above formulae. Then the CTL operators can
be characterize in terms of fixpoints of appropriate functions [3]. In the end, we need only to
calculate the formula EX  to a formula  for fixpoint obtained by computing EX y iteratively.

3 Semi-algebraic system

In this section, we review the theories of semi-algebraic system[9].
 Let 1[, ,]nx x  be the ring of polynomials in n indeterminates, X= 1{ , , }nx x , with

coefficients in the field  . Let the variables be ordered as 1 2 nx x x  . Then, the leading

variable (or main variable) of a polynomial p is the variable with the biggest index which indeed
occurs in p [11]. If the leading variable of a polynomial p is kx , p can be collected w.r.t. its

leading variable as 0
m

m kp c x c   where m is the degree of p w.r.t. kx and ic s are

polynomials in 1 1[, ,]kx x   . We call m
m kc x the leading term of p w.r.t. kx and mc the

leading coefficient. An atomic polynomial formula over 1[, ,]nx x  is of the form

1(, ,) 0np x x  , where { , , , }     , while a polynomial formula over 1[, ,]nx x  is

constructed from atomic polynomial formulae by applying the logical connectives [11]. We will
denote by 1({ , , })nPF x x the set of polynomial formulae and by 1({ , , })nCPF x x the set of

conjunctive polynomial formulae, respectively. Moreover, we will use � to stand for rationales
and � for reals, and fix  to be � [10].

In the following, the n indeterminates are divided into two groups: u= 1(, ,)tu u and

x= 1(, ,)nx x , which are called parameters and variables, respectively, and we sometimes use “,”

to denote the conjunction of atomic formulae for simplicity [10].
Definition 3.1 [10] (Semi-algebraic system) A semi-algebraic system is a conjunctive polynomial
formula of following from:

1

1

1

1

(,) 0, , (,) 0,

(,) 0, , (,) 0,

(,) 0, , (,) 0,

(,) 0, , (,) 0.

r

k

k l

m

p u x p u x

g u x g u x

g u x g u x

h u x h u x


 
  
  
  









 (1)

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0148

where 1r  , 0l k  , 0m  and all ip s , ig s and ih s are in [,] \u x� � . A SAS of the

form (1) is called parametric if 0t  , otherwise constant [10].

4 Polynomial program and transition system

A polynomial program comprises a finite set Proc of procedure names with one distinguished
procedure Main [6], execution of which starts with a call to Main. But in this paper, we only
introduce the flat program, that is to say, polynomial program has been synthesized firstly, as well
as only one procedure will be considered (like in figure 1).

The n-tuple X= 1(, ,)nx x consists of the variables appearing in the polynomial program, one or

many programs counter variables (“pc”) range over the program labels, and some common key
words, e.g. “integer”, “if”, “then” and “while”, appear with their standard meanings like which in
other programs. Now, let us introduce the rules of labelling polynomial programs. Let P be a
polynomial program, and the labelled version is denoted by P . Then the rules of labelling the
polynomial are like which in [5]:

— If P is not a composite statement (like :x e), then P P  .
— If 1 2;P P P , then 1 2; ;P P l P   .

— If P  if b then 1P else 2P end if, then P  if b then 1 1:l P else 2 2:l P end if.

— if P  while b do 1P end while, then P  while b do 1 1:l P end while.

— If P  begin 1 2 nP P P end, then P  begin ' ' '
1 1 1 2 2 2: : :n n nl Pl l P l l P l end.

4.1 Semi-algebraic transition system

Instead of representing polynomial program by control flow graph (like in [6, 7]), we formalize this
kind of programs with transition systems, which facilitates the checking procedure better.

Firstly, we rewrite the polynomial programs with command formulae [8]. Let us show this with
the program in figure 1. The command formula c of above polynomial program from line 3 to 4
over variables x is

' '3 0 1 4
guard action

c pc x x x pc        
 

In a command formula, the subformula over unprimed variables 1, , nx x forms the guard

(enabling condition). The remaining conjuncts form the action (update of the variables). Usually,
they are of the form 'x E , where E is the update expression over unprimed variables
(translating assignments :x E).

So the polynomial program could be given as a set C of command formulae.The translation from
programs to sets of command formulae is standard for this kind of programming languages.

Now we can get the semi-algebraic transition system (SATS) [1, 2] by command formulae
directly. SATS is extended the notion of algebraic transition systems (ATS) [14], in which each
transition is equipped with a conjunctive polynomial formula as guard, and contains both
polynomial equations and inequations.
Definition 4.1 (Semi-algebraic transition system) A semi-algebraic transition system is a
quintuple , , , ,V L T l  , where V is a set of program variables, L is a set of locations, and L is

a set of transitions [9]. Each transition T  is a quadruple 1 2, , ,l l    , where 1l and 2l are

the pre- and postlocations of the transition, '(,)CPF V V  is the transition relation, and

()CPF V  is the guard of the transition [9]. Only if  holds, the transition can take place.

Here, 'V (variables with prime) denotes the next-state variables. The location 0l is the initial

location, and ()CPF V is the initial condition [9].

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0149

For SATS , a state is an evaluation of the variables in V and all states could be denoted by

 Val V [9]. Without confusions we will use V to denote both the variable set and an arbitrary

state, and use  F V to mean the (truth) value of function (formula) F under the state V . The

semantics of SATSs can be explained through state transitions as usual [9]. Then the polynomial
program described in figure 1 could be translated into

 P V x   0L l  1 2,T  

 Where 1 0 0: , , 1 0, 1l l x x x     

 2 0 0: , , 2 0, 1l l x x x      

  100x  

For convenience, by ,
1 2l l   we denote the transition  1 2, , ,l l     , or simply by

1 2l l [9]. A sequence of transitions 1
11 12 1 2, , n

n nl l l l  is called compassable if

 2 1 1i il l  for 1, , 1i n  , and written as  1 2
11 12 21l l l   2

n
nl

 [9]. A compassable

sequence is called transition circle at 11l , if 11 2nl l . For any compassable sequence
1 2

0 1
n

nl l l    , it is easy to show that there is a transition of the form 1 2; ; ;
0

n
nl l  

so that the compassable sequence is equivalent to the transition [1], where
1 21 2 ; ; ;; ; ; ,

nn       

and
1 2; ; ; n    are the compositions of

1 21 2; ; ; , ; ; ;
nn          and

1 2
; ; ;

n     , respectively.

The composition of transition relations is defined in the standard way, for example,
4 23; 2x x x x     is  24 3 2x x    ; while the composition of transition guards have to be

given as a conjunction of the guards, each of which takes into account the past state transitions [12].
In the above example, if we assume the first transition with the guard 57x x  , and the second
with the guard 4 3x x  , then the composition of the two guards is

   45 4 47 3 3 3x x x x       [12]. That is to say, for any compassable sequence

1
1 2 , , n

nl l l  , it is equivalent to the transition 1 2; ; ;
0

n
nl l   [1]. Moreover, according

to the definition in [4, 5], the transitions in SATS are compassable.

Let us consider the SATS      2
0 1 1 0 1 2 1 0, , , , , 7, 5 , , ,P V x L l l T l l x x x l l         

 3
012, 12 , , 5x x x l x       [1]. 1 2

0 1 0l l l   is a compassable transition circle,

which is equivalent to  32 2
0 0, , 7 12, 5 7 12l l x x x x        [1].

It is also convenient to add a set of polynomial to  to modify or restrict a transition  ,

sometimes. We can simply denote this by P  where P is a polynomial set. Moreover, we also
simply denote S P for all transitions in SATS S restricted by set P .

5 Checking polynomial program

In this section, we propose a method to process the model checking polynomial programs.

5.1 Polynomial semantics of CTL

The first step to translate CTL formulae into polynomials is how to deal with the quantification
operators. Let  be a CTL formula and the corresponding polynomial be � � , then

Definition 5.1 (Polynomial semantics of quantification operators) Let  be a CTL formula

and 1, , nx x be the variables involved in  in the field  , the quantification operators will be:

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0150

   1 1, , , ,
ii n n x l

l

x f x x f x x





 � �� � � �� � � �

   1 1, , , ,
ii n n x l

l

x f x x f x x





  � �� � � �� � � �

Then it is convenient to translate CTL formulae into their corresponding polynomial
representations.
Definition 5.2 (Polynomial semantics of CTL formulae) Let Kripke structure, the polynomial
semantics will be:
（1）� �,x x AP （2）� � � �p    （3）� � � � � �p     

（4）� � � � � �p      （5）       ,EX x x R x x x     � �� � � �� � � �

（6）   � �pAX x EX   � �
� � （7）   � � � �   p pE EX E        �� � � �� � ��

（8）   � � � �     p p pA AX A EX A          � �� � � �  � �� � � ���

Figure 1 A program to multiply two numbers Figure 2 Computing the fixpoint

Figure 3 Model checking algorithm

procedure fixpoint
1 input
2 polynomial program P
3 LTL formula 

4 a map ': (1)i if x x i n  

5 begin

6 translate P into SATS , , , ,S V L T l 

7 translate  into polynomial set P

8 'S S P 

9 computing the zero of 'S
10 end

1 integer 100x  ;

2 while (0)x  do

3 0 : (0)l if x  then

4 1 : : 1l x x  ;

5 else

6 1 : : 2l x x   ;

7 end if
8 end while

procedure Check(,P R)

1 input
2 polynomial program P
3 LTL formula 

4 a map ': (1)i if x x i n  

5 begin
6 Case
7 P AP ; Return P ;

8 P   ; Return (,)pCheck R ;

9 P    ; Return (,) (,)Check R Check R  ;

10 P    ; Return (,) (,)Check R Check R  ;

11 P EX ; Return ((,))EX Check R ;

12 P AX ; Return ((,))PEX Check R  ;

13 ()P E    ; Return (, (,), (,))Quntil E Check R Check R  ;

14 ()P A    ; Return (, (,), (,))Quntil A Check R Check R  ;

15 end

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0151

5.2 Algorithms

We have shown in the figure 2, the most complex and basic step for checking these programs is
how to calculate the fixpoint, let us see the lemma below:
Lemma 5.1 Given a SATS S and a set of polynomials P corresponding to the formula  , then

there is a map  : 1i if x x i n   so that formula EX  represented by  S f P .

Theorem shows that a fixpoint can be got by computing EX y iteratively. Hence, a property

can be translated into polynomials directly, and we use theories of semi-algebraic systems to
calculate zeros of polynomials, which represent the fixpoint. The algorithm is shown in figure 3.

Our model checking algorithms are the same as ones in [3, 4], which do polynomial based model
checking by computing the fixpoints of polynomials set other than SATS . We do not list the details
here to bother readers.

6 Conclusion

The polynomial program is a natural expression of some real system, especially while considering a
system in terms of its performance. In this article, we propose a procedure of validating the
polynomial program in a formal way. The basic idea is to convert the polynomial program into a
semi-algebraic transition system, and then check the properties by the way of computing its zeros
iteratively. In future, we would connect the tools listed in this article to make the validating
procedure smoothly.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under
Grants nos. (11371003,11461006 and 61402121), the Natural Science Foundation of Guangxi under
Grants nos. (2013GXNSFAA019342 and 2012GXNSFGA060003), the ”Bagui Scholar” project of
Guangxi, the Scientific and technological research projects in Guangxi Universities under Grants
nos. (ZD2014044), the Scientific Research Fund of Guangxi Education Department under Grants
nos. (201012MS274), the graduate education innovation project in 2015 of Guangxi University for
Nationalities under Grants nos. (gxun-chxs2015097).

References

[1] Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, Chaochen Zhou, Discovering Non-linear
Ranking Functions by Solving Semi-algebraic Systems. ICTAC 2007: 34-49.

[2] Yinghua Chen, Bican Xia, Lu Yang, Naijun Zhan, Generating Polynomial Invariants with
DISCOVERER and QEPCAD. Formal Methods and Hybrid Real-Time Systems 2007: 67-82.

[3] Weibo Mao, Jinzhao Wu, Application of Wu's method to symbolic model checking. ISSAC
2005: 237-244.

[4] George S. Avrunin, Symbolic model checking using algebraic geometry. In CAV, Proceedings
of the 8th International Conference on Computer Aided Verification, pages 26-27.

[5] Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled, Model Checking, MIT Press, 1999,
ISBN 0-262-03270-8.

[6] Markus Möuller-Olm, Michael Petter, Helmut Seidl, Interprocedurally Analyzing Polynomial
Identities. STACS 2006: 50-67.

[7] M. Möuller-Olm, H. Seidl, Computing polynomial program invariants, Information Processing
Letters 91 (5) (2004) 233-244.

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0152

[8] Andreas Podelski, Andrey Rybalchenko, Software Model Checking of Liveness Properties via
Transition Invariants, MPI Technical Report 2-004, 2003.

[9] Xiaoyan Zhao, Non-termination Analysis of Polynomial Programs by Solving Semi-Algebraic
Systems. Advances in Multimedia, Software Engineering and Computing Vol.1 2012: 205-211.

[10] Bican Xia, DISCOVERER: A tool for solving semi-algebraic systems,
http://www.is.pku.edu.cn/ xbc/software.html.

[11] Bin Wu, Xiao Guang Zou, Computing Invariants for Hybrid Systems. Applied Mechanics and
 Materials 2013: 556-561.

[12] Cliff B. Jones, Zhiming Liu, Jim Woodcock, Theoretical Aspects of Computing – ICTAC
2007. Lecture Notes in Computer Science, ISBN: 978-3-540-75290-5(Print) 978-3-540-75292-9
(Online).

[13] Randal E. Bryant, Pankaj Chauhan, Edmund M. Clarke, Amit Goel, A Theory of Consistency
for Modular Synchronous Systems. Lecture Notes in Computer Science, 2002: 523-541.

[14] Sankaranarayan, S. Sipma, H. B. Manna, Non-linear Loop Invariant Generation using Grobner
Bases ACM symposium on principles of programming language. 2004, VOL 31, pages
318-329.

2016 International Symposium on Advances in Electrical, Electronics and Computer Engineering (ISAEECE 2016)

© 2016. The authors - Published by Atlantis Press 0153

