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Abstract. Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes require less hardware 
resources due to the quasi-cyclic structure of parity-check matrices. In this paper, two improved 
methods for constructing QC-LDPC codes are proposed. Firstly, in order to make sure the masked 
LDPC codes have flexible code rate and code length, an improved construction of masking matrix is 
presented. The proposed regular masking matrix of QC-LDPC codes have the girth at least 6. Then, 
the irregular codes are constructed by using improved finite field approach and PEG algorithm, which 
result in large girth and less short cycles. Simulations demonstrate that the proposed QC-LDPC codes 
have both lower error floor and good waterfall performance.   

Introduction  

Low-density parity-check (LDPC) codes were discovered by Gallager in 1962[1], and then 
rediscovered in the late 1990s. They were proved to be channel-capacity-approaching codes[2]. Since 
then, various methods for constructing LDPC codes have been proposed. 
     The construction of LDPC codes can be divided into two categories: random codes[3] and 
structured codes[4,5].  Random codes have good performance, but it’s too complex to application. 
Structured codes with optimized design can not only performance as well as random codes, but also 
get lower complexity in practical applications.  
     Recently, algebraic method have became an effective method to construct structured codes. This 
method can obtain the codes with good error performance more easily. Based on the algebraic 
construction of LDPC codes that have quasi-cyclic structure, called QC-LDPC codes[6,7]. In order to 
improve the bit error rate(BER) performance of QC-LDPC codes, many methods have been proposed 
to optimize the girth, degree distribution, the trapping set and so on. To improve the error floor 
performance, masking technique[8] was proposed to construction QC-LDPC codes. 
     In this paper, we present constructions of both regular and irregular QC-LDPC codes with large 
girth. First, a general construction based on finite field and masking technology is introduced. Second, 
an improved construction method of masking matrix of QC-LDPC codes is proposed. This method 
can obtain codes with a wider range of rate and also have a good performance. Then, we propose an 
improved method for designing base matrix by using two subsets in the finite field. Based on this base 
matrix, we can obtain irregular codes via masking by PEG algorithm[9]. At last, the simulation results 
prove that our methods have good error performance. 

QC-LDPC Codes Based on Finite Field and Masking  

Construction of base matrix. In general, QC-LDPC codes based on finite field need to construct an 
m×n base matrix B. It is shown in Eq. 1: 
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where wi,j (1≤ i ≤ m,1≤ j ≤ n) is an element of Galois field GF(q). Matrix B satisfied the row-column 
constraint: any two rows(or two columns) have at most one same non-zero elements at the same place. 
This constraint ensures that the constructed codes have girth at least 6. 

Let  Ab(wi,j) be a (q-1)×(q-1) circulant permutation matrix if wi,j ≠ 0, and it’s a (q-1)×(q-1) zero 
matrix if wi,j = 0. By replacing each wi,j with Ab(wi,j), we obtained a m(q-1)×n(q-1) parity matrix H. 
Construction via masking. Let Z = [zi,j] be a m×n masking matrix, where 1≤ i ≤ m,1≤ j ≤ n, zi,j∈
{0,1} , the masked matrix M is shown in Eq. 2: 























)()()(

)()()(

)()()(

,,2,2,1,1,

,21,22,22,21,21,2

,1,12,12,11,11,1

nmbnmmbmmbm

nbbb

nbnbb

wAzwAzwAz

wAzwAzwAz

wAzwAzwAz

HZM







                  

(2) 

where zi,jAb(wi,j)=Ab(wi,j) if zi,j = 1, zi,jAb(wi,j)= 0 if zi,j = 0. The masked matrix M gets the same degree 
distribution as the masking matrix Z. So the masking matrix plays a significant part in the 
performance of the masked LDPC codes. 

Construction of Regular and Irregular Codes via the Proposed Method  

The improved Construction of regular codes. In [10], a (3,6)-regular masking matrix is shown in 
Eq. 3: 
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 The girth of the regular QC-LDPC codes increased by his masking matrix from 6 to 8, and result 
in a masked matrix M with row weight 6 and column weight 3, respectively. It is very effective in 
decreasing short cycles and increasing the girth, so it has a good BER performance and low error floor. 
But this masking matrix Z(4,8) only suit condition in fixed size and code rate of base matrix. 

To solve the deficiency of this masking matrix, we proposed an improved masking matrix as 
follows: repeat the first pair of the columns and third pair of columns in Z(4,8) p times, obtain Z(4,8p) 
with 4×8k size. Then  downward expand Z(4,8p) t times, obtain Z(4t,8p) with 4t ×8p size. 

Let R = Z(4,8), improved masking matrix Z(4t,8p) is shown in Eq. 4:  
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where t ≥ 1, p ≥ 1. Notice that the masking matrix Z(4t,8p) also satisfied the 3×3 SM-constraint in 
[10], so the masked matrices have the girth-8  at least, which result in good BER performance and low 
error floor.  
The improved Construction of irregular codes. To construct base matrix, let α be the primitive 
element of GF(q). For 1≤ m,n ≤ q, let },...,,{ 110

1
 mkkkS  , },...,,{ 110

2
 nlllS   be two subsets 

of GF(q), we can obtain matrix element wi,j  in base matrix B, which is shown in Eq. 5: 

ji
lkjiw  ),(                                                                                                                            (5) 

where 0≤ ki ≤ m-1, 0≤ lj ≤ n-1. With different choices of two subsets S1 and S2, we can obtain different 
base matrix B with girth 6 or 8. In order to obtain irregular codes, we use PEG algorithm to construct 
masking matrix. By using degree distribution optimization, a proper masking matrix can be obtained. 
This method has better BER performance compared with the traditional construction by using PEG 
algorithm. 

Simulation Results 

The performance of different codes constructed by our methods are verified for additive white 
Gaussian noise channel. Codes are modulated by BPSK and decoded by sum-product algorithm. 
Maximum 50 iterations are considered for iterative decoding. 

Example 1: First, we construct base matrix B(6,121) over GF(128). The masking matrix Z(6,121) 
was constructed according to Eq.4. By masking B(6,121) with Z(6,121), we obtained a masked 
matrix M(6,121). Every elements in M(6,121) can be replaced by 127×127 permutation matrices. 
Finally, we obtained a (6,121)-regular (15367,14605) QC-LDPC code C1 with rate 0.95. The BER 
performance of this code is shown in Fig. 1. It shows that the performance of the code C1 is much 
better than the code C2 (16120,15345) given in [10]. The code C1 outperforms the code C2 by about 
0.25dB at BER=1×10-5. 

Example 2: In this example, let GF(128) be the field for code construction. Based on this field, we 
construct a 4×28 base matrix B(4,28). Masking matrix Z(4,28) is given according to Eq. 4. By using 
masking technology, we can get the masked matrix M(4,28) with row weight 21 and column weight 3. 
Hence the null space of Z(4,28) gives a (3556,3048) regular QC-LDPC code C3 with rate 0.86. For 
comparison, a corresponding regular (3584,3072) code C4 is given in [11]. The error performance is 
shown in Fig. 2. We can see that the error performance of C3 is better than that of the code C4 at all 
SNR region. It shows that the code construct with improved masking matrix has good BER 
performance and low error floor. 
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     Example 3: In this example, we construct an irregular QC-LDPC code by using two finite field 
subsets and PEG masking matrix. Let α be a primitive element of GF(64), we choose 

},...,,{ 1521
1 S  and },...,,{ 512322

2 S  be two subsets of elements, form a 15×30 base 
matrix B(15,30).  Next, the 15×30 masking matrix Z(15,30) was constructed by PEG  algorithm with 
degree distribution 14432 07.023.012.012.046.0)( xxxxxx  , then we obtained a masked 
matrix M(15,30). The null space of M(15,30) gives an irregular (1890,945) code C5 with rate 0.5. For 
comparison, an irregular (1890,945) code C6 is given in[12]. The BER performance is shown in Fig. 3. 
At the BER of 10-6, code C5 outperforms the code C6 by about 0.1dB. The code constructed by two 
subsets performs slightly better than finite field approach in [12]. 
     Example 4: Again, consider the field GF(64) for code construction. Set },...,,{ 1621

1 S , 

},...,,{ 542423
2 S  be two subsets, form a 16×32 base matrix B(16,32). The masking matrix 

Z(16,32) was constructed by PEG algorithm with degree distribution 
14432 07.023.012.012.046.0)( xxxxxx  . The null space of masked matrix M(16,32) 

gives an irregular (2016,1008) code C7 with rate 0.5. The code performance is shown in Fig. 4. Also 
included in Fig. 4 is the BER performance of a (2016,1008) code C8 given in [13]. It shows that the 
two codes perform the same before SNR of 2.0, but the code C7 outperforms the C8 starting from the 
SNR of 2.0. 
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Conclusions 

In this paper, we firstly proposed an improved method for construct masking matrix with large girth 
and low error floor. Based on the improved masking matrix which satisfies the 3×3 SM-constraint, 
the regular QC-LDPC codes with girth-8 were constructed, it has flexible code rate and good error 
performance compared to method in [10]. Moreover, we proposed two element subsets in finite field 
to construct the irregular QC-LDPC codes via PEG algorithm. The construction obeys the 
row-column constraints, which ensures that the girth is at least 6. Simulation results demonstrate that 
the proposed construction approaches of QC-LDPC codes have better BER performance and low 
error floor than some existing methods.  
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