Congruent Numbers and The Rank of Elliptic Curves

Yuanbo Liu^{1, a}

¹Qingdao University, Shandong Province ,China liuyuanbo15@126.com

Keywords: Non-congruent number; Congruent number; Elliptic Curves

Abstract. Let p and q be prime with $p \equiv 3 \pmod{8}$ and $q \equiv 5 \pmod{8}$, and let $(\frac{p}{q}) = -1$. If n = pq, then

n is a congruent if and only if the equation $2qw^2 = 1 + p^2 z^4$ has rational solutions. And The Birch Swinnerton-Dyer conjecture predicts that the rank of $E_n(Q)$ is one.

Introduction

If $n = \frac{1}{2}ab$ with rational numbers *a*,*b* being two right sides of a rational right triangle, the *n* is a congruent number. Otherwise *n* is a non-congruent number. The elliptic curve has an equation $E_n : y^2 = x^3 - n^2 x$, then *n* is a congruent if and only if $E_n(Q)$ has a non-zero rank. The problem of congruent number is very old and Arab scholars discussed it in the tenth century^[1].

The Birch Swinnerton-Dyer conjecture predicts that if $n \equiv 5,6or7 \pmod{8}$ it is a congruent^[2]. The conjecture also made by Alter, Curtz and Kubota^[3].

In this paper we discuss n = pq with $p \equiv 3 \pmod{8}$ and $q \equiv 5 \pmod{8}$.

1. 2-isogeny

Let E/Q and E'/Q be Elliptic curves given respectively by the equations $E_n: y^2 = x^3 - n^2 x$ and $E'_n: y^2 = x^3 + 4n^2 x$

and let

$$\phi: E \to E', \phi(x, y) = (\frac{y^2}{x^2}, \frac{y(x^2 + n^2)}{x^2})$$

be the isogeny of degree 2 with kernel $E[\phi] = \{o, (0, 0)\}$. Then there is an exact sequence

$$0 \rightarrow \frac{E'(Q)}{\phi(E(Q))} \rightarrow Q(S,2) \rightarrow WC(\frac{E}{Q}) \quad (*)$$

$$(X,Y) \mapsto X \quad , \quad d \mapsto \{\frac{C_d}{Q}\}$$

$$o \mapsto 1$$

$$(0,0) \mapsto -1$$

$$Q^{*2} \neq 0$$

where $S = \{\infty\} \cup \{p \mid 2n\}$ and $Q(S, 2) = \{b \in \frac{Q^{*2}}{Q^{*}} : ord_{p}(b) \equiv 0 \pmod{2}, \forall p \notin S\}.$

Furthermore, for each $d \in Q(S,2)$, let $\frac{C_d}{Q}$ be the homogeneous space for $\frac{E}{Q}$ by the equation $C_d : dw^2 = d^2 + 4n^2z^4$. Then the ϕ -Selmer group is

$$S^{(\phi)}(\stackrel{E}{\not Q}) \cong \{ d \in Q(S,2) : C_d(Q_p) \neq \emptyset, \forall p \in S \}.$$

Finally, we have the map

$$\varphi: C_d \to E', \varphi(z, w) = (\frac{d}{z^2}, -\frac{dw}{z^3}). (***)$$

Let $\hat{\phi}: E' \to E$ be the dual of ϕ so that $\phi \hat{\phi} = [2]$ and $\hat{\phi} \phi = [2]$. Let $\frac{C'_d}{Q}$ be the homogeneous space for $\frac{E'_Q}{Q}$ by the equation $C'_d: dw^2 = d^2 - n^2 z^4$. Then the $\hat{\phi}$ -Selmer group is

$$S^{(\hat{\phi})}(\stackrel{E'}{\not Q}) \cong \{ d \in Q(S,2) : C'_d(Q_p) \neq \emptyset, \forall p \in S \}.$$

Moreover, we have the following exact sequences:

$$0 \to \frac{E'(Q)[\phi]}{\phi(E(Q)[2])} \to \frac{E'(Q)}{\phi(E(Q))} \to \frac{E(Q)}{2E(Q)} \to \frac{E(Q)}{\hat{\phi}(E'(Q))} \to 0. \quad (**)$$

2. n=pq

Lemma 1. Let n = pq with $p \equiv 3 \pmod{8}$ and $q \equiv 5 \pmod{8}$, and let $(\frac{p}{q}) = -1$. Then the $\hat{\phi}$ -Selmer group $S^{(\hat{\phi})}(\frac{E'}{Q}) = \{\pm 1, \pm n\}$, and $\frac{E(Q)}{\hat{\phi}(E'(Q))} = \{o, (0, 0), (\pm n, 0)\}$.

Proof. We will use the exact sequence (*) to compute $\frac{E(Q)}{\hat{\phi}(E'(Q))}$. Now $S = \{2, p, q, \infty\}$ and $Q(S, 2) = \{\pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq\}$.

For $d \in Q(S,2)$, C'_d has the equation

$$C'_d: dw^2 = d^2 - p^2 q^2 z^4$$

Claim: For each $d \in Q(S, 2), d \neq \pm 1, \pm n$, there exist $p \in S$ such that $C'_d(Q_p) = \emptyset$.

- 1) $d = \pm p$, $C'_{\pm p} : \pm pw^2 = p^2 p^2 q^2 z^4$. Let $(\frac{z'}{t}, \frac{w'}{t^2}) = (pz, pw)$ with $(z', w', t) \in Z$, then $C'_d : pw'^2 = t^4 q^2 z'^4$. Since $q \mid t$ if and only if $q \mid w'$, Then suppose $(z', w', t) \in C'_{\pm p}(Q_q)$ with $0 \neq (z', w', t) \in Z_p$ and $ord_q w' = 0$. We have $(\frac{\pm p}{q}) = 1$, then $(\frac{p}{q}) = 1$ which contradicts $(\frac{p}{q}) = -1$. Therefore $C'_{\pm p}(Q_q) = \emptyset$.
- 2) $d = 2d', d' \in Q(S, 2)$ and $ord_2d = 0, C'_d : 2d'w'^2 = 4d'^2t^4 p^2q^2z'^4$. Then $ord_2 2pw'^2 = 1 + 2k_1$, $ord_2 4d't^4 = 2 + 4k_2$ and $ord_2(p^2q^2z'^4) = 4k_3$. Therefore $C'_{2d}(Q_2) = \emptyset$.
- 3) $d = \pm q$, $C'_{\pm q} : \pm qw^2 = q^2 p^2 q^2 z^4$. Let $(\frac{z'}{t}, \frac{w'}{t^2}) = (qz, qw)$ with $(z', w', t) \in Z$, then $C'_d : qw'^2 = t^4 p^2 z'^4$. Since $q \mid t$ if and only if $q \mid z'$. Then suppose $(z', w', t) \in C'_{\pm p}(Q_q)$ with $0 \neq (z', w', t) \in Z_p$ and $ord_q z't = 0$. We have $(\frac{p^2}{q})_4 = 1$, then $(\frac{\pm p}{q}) = 1$ which contradicts $(\frac{p}{q}) = -1$. Therefore $C'_{\pm q}(Q_q) = \emptyset$.

This completes the proof of claim so we have $S^{(\hat{\phi})}(E'/Q) = \{\pm 1, \pm n\}$. Then $\frac{E(Q)}{\hat{\phi}(E'(Q))} = \{o, (0,0), (\pm n,0)\}, \text{ since } \{o, (0,0), (\pm n,0)\} \in \frac{E(Q)}{\hat{\phi}(E'(Q))}.$

© 2016. The authors - Published by Atlantis Press

Lemma 2. Let n = pq with $p \equiv 3 \pmod{8}$ and $q \equiv 5 \pmod{8}$, and let $(\frac{p}{q}) = -1$. Then the ϕ -Selmer

group
$$S^{(\phi)}(\stackrel{E}{\not Q}) \in \{1, 2q\}$$
, and $\left|\frac{E'(Q)}{\phi(E(Q))}\right| \le 2$.

Proof. We also use the exact sequence (*) to compute $\frac{E'(Q)}{\phi(E(Q))}$. Now $S = \{2, p, q, \infty\}$ and

$$Q(S,2) = \{\pm 1, \pm 2, \pm p, \pm q, \pm 2p, \pm 2q, \pm pq, \pm 2pq\}.$$

For $d \in Q(S,2)$, C_d has the equation

$$C_d: dw^2 = d^2 + 4p^2q^2z^4.$$

Claim: For each $d \in Q(S, 2), d \neq 1, 2p$, there exist $p \in S$ such that $C_d(Q_p) = \emptyset$.

1) $C_d(Q_{\infty}) = \emptyset \Leftrightarrow d < 0$. Then d > 0. 2) d = q, p, $C_d : dw^2 = d^2 + 4p^2q^2z^4$. Let $(\frac{z'}{t}, \frac{w'}{t^2}) = (dz, dw)$ with $(z', w', t) \in Z$, then $C_d : dw'^2 = t^4 + 4\frac{n^2}{d^2}z'^4$. Since $\frac{n}{d}|t$ if and only if $\frac{n}{d}|w'$, then suppose $(z', w', t) \in C_d(Q_n)$ with $0 \neq (z', w', t) \in Z_n$ and $ord_q w' = 0$. We have $(\frac{d}{n/d}) = 1$, which contradicts $(\frac{p}{q}) = -1$. Therefore $C_d(Q_n) = \emptyset$.

3)
$$p|d$$
, $C_d : dw'^2 = t^4 + 4\frac{n^2}{d^2}z'^4$ with $(z', w', t) \in Z$. Since $p|t$ if and only if $p|z'$, then suppose $(z', w', t) \in C_d(Q_p)$ with $0 \neq (z', w', t) \in Z_p$ and $ord_q tz' = 0$. Then $(\frac{-1}{p}) = 1$, which contradicts $p \equiv 3 \pmod{8}$.

This completes the proof of claim so we have ϕ -Selmer group $S^{(\phi)}(\stackrel{E}{/Q}) \in \{1, 2q\}$. Then $\left|\frac{E'(Q)}{\phi(E(Q))}\right| \leq \left|S^{(\phi)}(\stackrel{E}{/Q})\right| \leq 2$. This completes the proof of Lemma 2.

Theorem. Let p and q be prime satisfy $p \equiv 3 \pmod{8}$ and $q \equiv 5 \pmod{8}$, and let $(\frac{p}{q}) = -1$. If n = pq, then the rank of $E_n(Q)$ is one if and only if $C_{2n}(Q) \neq \emptyset$.

Proof. Since the exact sequence (**) ,Lemma1 and Lemma2, $E_n(Q)$ is one if and only if $\left|\frac{E'(Q)}{\phi(E(Q))}\right| > 1$. And $\left|\frac{E'(Q)}{\phi(E(Q))}\right| > 1$ if and only if $C_{2q}(Q) \neq \emptyset$, since the map (***). This completes the proof of Theorem

proof of Theorem.

As we all know $C_{2q}(Q) \neq \emptyset$ if and only if $2qw^2 = 1 + p^2 z^4$ has rational solutions. And this theorem proofs $r(E_n(Q)) \leq 1$. The Birch Swinnerton-Dyer conjecture predicts that the rank of $E_n(Q)$ is non-zero with $n \equiv 5 \pmod{8}$. Then the rank of $E_n(Q)$ is one and the equation $2qw^2 = 1 + q^2 z^4$ have rational solutions.

References

- [1] Feng K., Non-Congruent Numbers, Odd Graphs and the Birch-Swinnerton-Dyer Conjecture , Invent Math, (1987),89:527-560.
- [2] Koblit W., Introduction to Elliptic Curves and Modular Forms, Springer-Verlag.(1973)
- [3] R. Alter, T. B. Curtz and K. K. Kubota, Remarks and results on congruent numbers, in: Proc.3rd South Eastern Conf. Combin., Graph Theory and Compute., 1972, Florida Atlantic Univ., Boca Raton, Fla., (1972),27-35.
- [4] Silverman J.H., The Arithmetic of Elliptic Curves, Springer-Verlag, (1986)