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Abstract. Algorithms based on Khatri-Rao (K-R) product improve the degree of freedom (DOF) of 
virtual arrays and thus more source angles can be estimated. However, the estimation accuracy is not 
satisfying. In this paper, a method considering spatial sparsity (SS) of sources in K-R subspace is 
proposed to estimate direction-of-arrival (DOA) angle. The spurious signal of the virtual array is 
obtained in K-R subspace and then the DOA angle estimation is finally equal to the solution of a convex 
optimization problem. In the proposed K-R SS method, high estimation accuracy is achieved by taking 
advantage of the cross-covariance matrix information. Simulation results demonstrate the effectiveness 
of the proposed method. 

Introduction 
A number of high-resolution techniques for direction-of-arrival (DOA) estimation in radar, sonar and 
wireless communications have been proposed in recent years [1,2,3]. However, the majority of these 
techniques are confined to detect lesser sources than sensors, i.e. the maximum number of sources 
which can be resolved with a uniform linear array (ULA) of N  sensors is 1N − . To solve this problem, 
virtual array is produced by adopting non-uniform array and special algorithms to increase the degrees 
of freedom (DOF) of array. The existing two typical algorithms to produce virtual array is fourth-order 
cumulant [4] and K-R product [5,6,7,8]. Compared with algorithms using fourth-order cumulant, 
algorithms based on K-R product are more computational efficient and fewer snapshots is required. 
However, there are still some problems about K-R product based algorithms.  

In K-R subspace, by vectoring the covariance matrix of the original echo signal, the equivalent echo 
signal of virtual array is obtained, i.e. the spurious signal. Although the spurious signal has a similar 
form of the original echo signal and consists of signal component and noise component as well, the 
difference between the two signals is not only the dimension of steering vector, but also the 
signal-to-signal coherence and signal-to-noise coherence. Moreover, the noise component of spurious 
signal is obviously not Gaussian white, which breaks the basic assumption of most DOA estimation 
methods. One solution of the foresaid problems proposed in [7] is called K-R MUSIC method, in 
which spatial smoothing algorithm is utilized to work out the coherence, and then the traditional 
multiple signal classification (MUSIC) algorithm can be used to estimate DOA angle. The limit of K-R 
MUSIC is that the number of sources is required in advance and the expected estimation accuracy is 
barely achieved. The other solution proposed in [9] is called K-R CS method, in which compressed 
sensing (CS) theory is used to avoid the influence caused by coherence and DOA angle estimation is 
obtained without knowing the number of sources beforehand. Whereas, false peaks make a bad 
influence on K-R CS and even let it fail in a low SNR condition.  

In order to obtain high estimation accuracy and a stable performance in bad electromagnetic 
environment, a DOA estimation method in K-R subspace is proposed based on spatial sparsity of 
sources in this paper. To decorrelate signal-to-signal coherence better, the covariance matrix 
information and cross-covariance matrix information of virtual sub-arrays are fully utilized via 
weighted summation. After that, the unknown noise and signal-to-noise coherence can be solved 
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through the weighted matrix determined in the light of spatial representation theory. It is noted that the 
proposed K-R SS method does not require the prior information of source number. 

 Signal model 

Consider a N linear array impinged by D  narrowband sources from directions{ }, 1, 2,...,=i i Dθ with 

powers{ }, 1, 2,...,=i i D2σ , the echo signal is  

( ) ( ) ( ) 1,2,...,t t t t M= + =X AS N .                                                                                                (1) 

where ( ) ( ) ( ) T 1[ ,..., ] ×= ∈£Nt t t1 NX x x  denotes the echo signal of the tht snapshot. ( )Tg  means 
transpose operator and M  is the number of snapshots. The array manifold matrix 

( ) ( )1[ ,..., ] ×= ∈£N D
Dθ θA a a  consists of D  steering vectors 

( ) T
1[exp( j2π sin / ),..., exp( j2π sin / )]=i i n ix λ x λθ θ θa , 1,...,=n N , where nx denotes the position of thn  

sensor and λ  denotes wave length. ( ) ( ) ( ) T 1[ ,..., ] ×= ∈£Dt t t1 DS s s  is the zero mean signal vector and 

( ) 1×∈£NtN is Gaussian white noise with power nσ
2 . The noise covariance matrix is written as 

2 N N
nσ

×= ∈NN NR I £ , where ( )Hg  denotes conjugate transpose operator and NI  is the unit matrix of 
size ×N N . 

Therefore, the covariance matrix of echo signal is 
( ) ( ){ }H H H 2

nE σt t= = + = +XX SS NN NR X X AR A R ApA I .                                                             (2) 

where ( )diag=SSR p  is the covariance matrix of signal, [ , , , ]L2 2 2
1 2 D= σ σ σp  is signal power vector 

and denotes a ×D D  diagonal matrix with vector ∈¡Dp on the main diagonal. 
Given ×∈£n kA  and ×∈£m kB , the K-R product is then denoted by 

[ ,..., ] nm k×= ⊗ ⊗ ∈1 1 f fA B a b a bo £ .                                                                                                       (3) 
where ⊗  is the Kronecker product. A significant property of K-R product proved in [6] is 

( ) ( )H ∗= ovec ADB B A d .                                                                                                                      (4) 

where ( )diag=D d  and ( )∗g  denotes conjugate operator.  

K-R SS DOA Estimation Method 
Based on the property of K-R product, the Eq. 2 can be rewritten as  

( ) ( ) ( ) ( ) ( )H 2
nvec vec vec σ vec∗= = + = +XX SS NNy R AR A R A A po NI                                               (5) 

It is obvious that 
2* ×∈o £N DA A  has the similar form with the manifold matrix Α . However, the 

row of * oA A , which is connected with sensor position of virtual ULA obtained in K-R subspace, is 
out of order. By rearranging * oA A  in accordance with the sensor positions of virtual ULA and 
averaging the repeated rows, the spurious signal of virtual ULA is as follows 

2
nσ ′= +KRz A p I .                                                                                                                              (6) 

where KRA is the  manifold matrix of virtual ULA and ′I  is the noise. 
In order to maximize the DOF of array to improve estimation performance, a two level nested 

passive array with N  sensors provided in [7] is adopted and a virtual ULA with Nv  sensors in d  
inner space is then obtained in K-R subspace, where 2 / 2= +Nv N N - 1 . Thus, the dimension of z  and 

KRA  are 1×Nv  and ×Nv D , respectively. KRA  is expressed as follows 
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where exp( j2π sin / )=i iv d λθ . The noise 1Nv×′∈I ¡  is a vector of all zeros except a 1 at the thNf  
position, where 2( / 4 / 2)= +Nf N N . 

Since the signal-to-signal coherence makes the covariance matrix of z  a singular matrix, spatial 
smoothing algorithm is applied to recovery the rank of covariance matrix. In this case, the virtual array 
is divided into Nf  sub-arrays and each one has Nf  virtual sensors.   

The spurious signal of thj sub-array, which corresponds to the ( 1)th− +Nf j to ( 1)th− +Nv j rows 
of z , is thus denoted as 

1 , 1j 2
nσ j Nf− ′′= + ≤ ≤j 1z AΦ p I .                                                                                                 

  (8) 
where 1A  is the manifold matrix of the first sub-array, ( )diag , ,= L1 Dv vΦ  and 1Nf ×′′∈I ¡ is a vector 
of all zeros except a 1 at the thj  position. 

Thus, The full-rank covariance matrix of sub-arrays is  

1

Nf

j=

′ = ∑sum j zz jR F R F .                                                                                                                        

(9) 
where { }HE ×= ∈£Nv Nv

zzR zz  is the covariance matrix of z  and ( ) ( )1 | |NfNf j Nf Nf j× − × −
 =  jF 0 I 0 . 

Furthermore, for better performance, the cross covariance matrix information of sub-arrays is added 
by weighted summation, and the full-rank covariance matrix of sub-arrays is rewritten by 

Nf Nf

1 1
jk

j k
w

= =

= ∑∑sum j zz kR F R F .                                                                                                                   (10) 

where jkw  is the ( )th,j k  element of the weighted matrixW .  
It should be noted that the matrix sumR is made of two components: signal component 

H= H
S 1 1 1 1R A ΛA WA ΛA  and noise component H H H= + +4 2 2

n n nσ σ σN 1 1 1 1R W A ΛA W W A ΛA , 
where = ssΛ R contains the sources information on main diagonal.  

By utilizing the spatial sparsity of sources, W  is constructed as 

( ) ( )1 1H Hˆ ˆdiag( )
− −

= =KR KR KR KRW B ΛB B p B .                                                                                            (11) 

where the signal vector ˆ ∈£Pp  is K - sparse using the direction grid P , i.e. p̂ has at most =K P  
non-zero entries (let =K D  in this paper). ˆ ˆdiag( )Λ = p  is a diagonal matrix with the sources 
information contained by elements on main diagonal in K - sparse, and ×∈£Nf P

KRB  is the 
over-complete dictionary matrix for virtual sub-arrays. 

Therefore, the DOA angels estimation, which is thus equivalent to the recovery of p̂  from 
Hˆˆ

S KR KRR = B ΛB ， is represented by 

02ˆ

ˆ ˆarg min . .
P

s t K
∈

= − ≤sum S
p

p R R p
£

.                                                                                                  (12) 

where { }0
ˆ ˆ: : 0= ≠ii pp  is the 0l - norm of p̂ . 

However, Eq. 11 is combinatorial and computationally intractable except for small problems, and 
one commonly used approach is to solve a closely related 1l - minimization problem 
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12ˆ

ˆ ˆarg min . .
P

s t K
∈

= − ≤sum S
p

p R R p
£

.                                                                                                  (13) 

where 1
ˆ ˆ:= ∑ ii

pp . 
Eq. 12 is thus a convex optimization problem [10] and can be rewritten as  

2

12ˆ

1 ˆ ˆarg min
2P

µ
∈

= − +sum S
p

p R R p
£

.                                                                                                     (14) 

Simulations 
In this section, the effectiveness of our method is tested. Assume that a 6 sensors two level nested 
passive array ( 6=N ) with10 uncorrelated narrowband sources( 10=D ) impinging on it from  
directions of arrival { }o o o o o o o o o o-55 ,-40 ,-30 ,-15 ,-5 ,10 ,15 ,30 ,45 ,60 , with all equal powers. In each 
simulation 1024 snapshots and 1000 Monte-Carlo simulations are used. 

In the first simulation, the RMSEs against SNR are plotted in Fig. 1, where the SNR varies from 

-10dB to 20dB. The RMSE of angle estimation is defined as ( ){ }D 2

1

1 ˆRMSE E
D i i

i
θ θ

=

= −∑  , where iθ  

is the real DOA angle and îθ  is the estimated one for the thi source. It can be seen from Fig. 1 that K-R 
SS method proposed in this paper outperforms K-R MUSIC method and K-R CS method, which is due 
to the added cross-covariance matrix information. K-R SS method has higher estimation accuracy than 
the others, and it also has better robustness than K-R CS based method even in low SNR condition. 

In the second simulation, the probability of successful estimation is taken into consideration. 
Because of the high RMSE of K-R MUSIC method showed in Fig. 1, only the successful probability of 
K-R CS and K-R SS method are compared. If the array elements spacing is longer than a half wave 
length, false peaks may appear. A successful estimation is thus defined as an estimation without false 
peaks and the probability of success is the ratio of the successful estimation to the whole Monte-Carlo 
simulations. As shown in Fig. 2, the probability of success with K-R SS method is compared with that 
of K-R CS method when the SNR varies from -10dB to 0dB. Obviously, the success probability of K-R 
SS method is much higher than that of K-R CS method. Finally, the success probability of K-R CS 
method catches up with that of K-R SS method at 0dB. It indicates that K-R SS method outperforms 
the K-R CS method in low SNR conditions. 
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Fig. 1. RMSE versus SNR  

-10 -8 -6 -4 -2 0
0

0.2

0.4

0.6

0.8

1

SNR (dB)

Pr
ob

ab
ilit

y 
of

 S
uc

ce
ss

 

 

K-R CS
K-R SS

 
Fig. 2. Probability of Success versus SNR 

Conclusions 
We have developed a novel DOA estimation method, which called K-R SS method in this paper. On 
the basis of having the capability to detect more sources than sensors via K-R product, a higher 
estimation accuracy is achieved by spatial sparsity of sources because of the added cross-covariance 
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matrix information of virtual sub-arrays. Simulation results imply that the proposed method 
outperforms the previous ones. 
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