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Abstract. Maximal frequent itemset mining is a very important method in mining frequent itemsets, 
which will reduce the mining meory cost and supply a better understanding of the rules generated by 
the frequent itemsets. In this paper, we review the maximal frequent itemset mining algorithms over a 
stream, which is an unlimited and dynamically changed data.  

Introduction 
Frequent Pattern was proposed by Agrawal in 1993[1], when data is high relative or the minimum 
support is set much lower, massive frequent patterns are generated, the count is even bigger than that 
of the original transactions; thus, frequent patterns contain redundant information. Given a set of 
distinct items Γ= {i1,i2,…,in} where |Γ| = n denotes the size of Γ, a subset X ⊆ Γ is called an 
itemset; suppose |X| = k, we call X a k-itemset. A concise expression of itemset X = {x1,x2,…,xm} is 
x1x2…xm. A database D = {T1,T2,…,Tv} is a collection wherein each transaction is a subset of Γ, 
namely an itemset. Each transaction Ti(i =1… v) is related to an id, i.e., the id of Ti is i. The absolute 
support (AS) of an itemset X, also called the weight of X , is the number of transactions which cover X, 
denoted Λ(X)= {|T ||T∈D∧X⊆T }; the relative support (RS) of an itemset X is the ratio of AS with 
respect to |D|, denoted Λr(X)=Λ(X)/|D| . Given a relative minimum support λ (0 ≤λ≤ 1), itemset X 
is frequent if Λr(X) ≥λ. Table 1 is a simple database.  

Researchers began to find the condense representations of frequent patterns for data concision. The 
maximal frequent pattern is the most effective representation since the count of maximal frequent 
patterns is much smaller when the minimum support is low, which can efficiently reduce the computing 
cost and storage cost; furthermore, they are easier to understand for users. A maximal itemset is a 
largest itemset in a database D, that is, it is not covered by other itemsets. A maximal frequent itemset 
is both maximal and frequent in D, i.e., given an relative support λ, an itemset X is maximal frequent 
itemset if Λr(X)≥λ∧!Y|Y⊃X.  

 
Table 1 Simple Database 

ID Itemsets 
1 a b c d e  
2 a b c d  
3 b e 
4 c d e 

Data Structures 
Vertical Data Format Given the distinct items set $Q={i1,i2,…,im}, traditional dataset D is 

composed of transactions with ids. Each transaction is an itemset T in Q, that is, 
D={(id1,T1),(id2,T2),…,(idn,Tn)}, which is called the horizontal data format. The data format in Table 
1 is horizontal data format, in which a support is computed by scanning all the dataset, which results in 
a huge runtime cost. Consequently, the dataset can be converted to another format, that is, each item 
corresponds to the id collection in which each transaction covers it, i.e., 
Dv={(i1,idlist1),(i2,idlist2),…,(im,idlistm)}, which is called the vertical data format. Vertical data format 
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can quickly compute the support according to the idlist of a pattern, i.e., for a pattern X={i1,i2,…,ix}, 
its idlist is computed by idlist1 ˄  idlist2 ˄  … ˄  idlistx, and the support of X is the ids count in its idlist. As 
an instance, in Table 1, idlist{a}=(1,2), idlist{b}=(1,2,3,4), then idlist{ab}=idlist{a}  
˄ idlist{b}=(1,2), as a result, the support of ab is 2. 

Since the size of the distinct items set Q is unchanged, a bitmap format can be employed to represent 
the idlist, consequently, the bits number in the bitmap equals to the size of Q. Therefore, we can build 
a binary value bitt for each item it. In bitt, the idth number is 1 if this id is existed in idlistt, otherwise 0. 
This can compresses the idlists and raise computing efficiency through bitwise operators. For an 
example in Table 1, each pattern idlist can represented by a binary value with 5 numbers; thus, 
bit{a}=11000, bit{b}=11110, then bit{ab}=bit{a} ˄ bit{b} = 11000. 

If a tree structure is introduced to build the relationship between  sub-pattern and super-pattern, a 
new structure, diffset, can be used  for further pruning. For two patterns X and Y and X in Y, then the 
transactions covering Y cover X, that is, idlistY in idlistX. Generally, idlistX \ idlistY is far less than idlistY; 
thus, we can only store idlistX \ idlistY for pattern Y, which is called the diffset of Y, denoted diffestY. 
For an instance, idlist{a}=(1,2),  since the idlists of ab, ac, ad are all (1,2), the diffsets  are all empty; on 
the other hand, idlist{ae}=(1), then  diffset{ae}=(2).   

Both bitmap format and diffset aim to reduce the runtime or storage cost, nevertheless, they have 
their own weakness. When the dataset is sparse, most of bitmap format data is redundant, which will 
waste vast storage space; similar, the size of diffset is larger than that of idlist, and the format 
conversion adds extra computing cost.   

Frequent Pattern Tree Frequent pattern tree(FP-tree) is proposed by Han et al, which can 
efficiently compress the itemsets,  this is due to the items sharing; also, the pattern support is  computed 
more quickly; furthermore, a batch processing strategy can  be used when memory is not enough to 
store all patterns. In FP-tree,  each node is composed of 5 parts: the node name, node support, node  
link, child node pointers, parent node pointer; in addition, an  items head table, composing of item name, 
item support, and item  link, is employed to effective traverse the FP-tree, in which the  item name is 
sorted in a descending criteria order by the item  support. In a FP-tree, only the nodes whose support is 
higher than the minimum support are stored. Figure 1 is the FP-tree of dataset in Table 1 when the 
minimum support is 1. In such a data structure, the support of a pattern can  be computed by one 
FP-tree scan. For example, for pattern abcd,  its support is computed as follows: The item a is found 
out from  the item head table firstly, then the patterns head with a are  obtained by the item link, in 
Figure 1, the first  searched node is a:1, which is as a beginner to traverse end at  the root node, that is, 
the pattern aedcb is obtained, which  covers abcd; thus, the temp support of abcd is 1, continue with  
this method, the pattern between the second node a:1 and the root  node is adcb, which also covers 
abcd; thus, the final support of  abcd is 1+1=2. 
 

 
Fig. 1 FP-Tree 
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Maximal Frequent Itemset Mining Algorithms over Dynamically Changed Data 
UMFIA algorithm[2] proposed a FP-tree based maximal frequent pattern updating algorithm. This  

algorithm proved that the support of the new item generated from the  new database was lower than the 
support of the original item  generated from the original database; thus, the new item can be  directly 
inserted into the FP-tree as a leaf node; furthermore, it  also analyzed the relation between the maximal 
frequent itemsets in  the original database and the new one, that is, the union of these  maximal frequent 
itemsets are definitely the superset of all the  maximal frequent itemsets in the whole database; thus, the 
initial  maximal pattern candidates are not composed of all the distinct  itemsets, but the items in the 
union of items in the original  maximal patterns and the new maximal patterns.   

IMFI algorithm[3] further presented IMFI algorithm, which not only considered the maximal 
frequent patterns relationship between the original database and the new one,  but also considered the 
relationship of other patterns. This consideration can reuse the mined information. IMFI classified the 
patterns into six categories. for X in {D, d, D U d}, where  D denotes the original database, d denotes 
the added database,  and D U d denotes the overall database; in addition, MFIX,  FX, and IX separately 
denote sets of the maximal frequent  patterns, the frequent patterns and the infrequent patterns. When 
a pattern q belongs to one of the six categories in D or d, it maybe becomes the maximal frequent 
pattern in D U d. If q satisfies the first possibility, then it is definitely a maximal  frequent pattern in D 
U d; if q is in the second or the  eighth possibility, and it is frequent in D U d, then it is a  maximal 
frequent pattern; otherwise, if q is infrequent and q  satisfies one of the rest possibilities, then the 
subsets of q may  be the maximal frequent patterns in D U d. Based on the heuristic rules, IMFI 
conducted a fast pruning. Further, in this algorithm, the SG-Tree, a data structure similar to R-Tree, 
was employed to maintain the pattern bitmaps. This structure can quickly locate the patterns; thus, the 
support computing is speeded up.  

DSM-MFI algorithm [4] proposed the DSM-MFI method, in which a batch processing technique 
is used. The stream data is split into groups for separate mining, and the results are merged. This paper 
uses the SFI-forest to store the frequent items and frequent pattern synopsis, for each arrived 
transaction T=x1x2…xm, the projection xi+1xi+2…xm of each item xi is maintained in the SFI-forest, and 
the infrequent patterns are pruned to reduce the memory cost. Even though the support of frequent 
itemsets is not accurate, it can be handled by the specified error parameter. When a user is querying 
with a threshold, this method summarizes all the data in SFI-forest and compute the maximal frequent 
itemsets in real time.   

estDec+ algorithm estDec+ is an improved algorithm from  estDec, also presented by [5]. To 
guarantee the data synopsis can be stored in memory, the algorithm introduces the approximate 
argument to combine the neighbor nodes in the compacted prefix tree CP-tree. To conveniently 
combine, split and rearrange the nodes when new transactions arrive, a node maintains the index of its 
parent nodes and the maximal possible support and minimal possible support, as well as the combined 
items. 

INSTANCE algorithm [6] proposed a simple but effective algorithms INSTANCE, which only 
use arrays to  store the maximal frequent itemsets, that is, an array u[i] is  used to store the itemsets 
with support i(i is an integer no  larger than the minimum support). Once a new transaction T  arrives, 
the existing itemset will be compared to T, if the  support is updated, it will be transferred to the array  
corresponding to its support, and the new covered itemsets are  deleted. This algorithm maintains all 
the maximal frequent itemsets with support lower that the minimum support, as can be seen, the 
performance will be improved when the minimum support is small.   

estMax algorithm [7] introduced the most  efficient stream maximal frequent itemset mining 
method estMax.  Along with the increment of stream data, if the relative minimum support is not 
changed, then the absolute minimum support will become larger, a maximal frequent itemset with an 
unchanged support will become infrequent. A large number of data check will spend computing cost. 
To address this problem, this method predict the  maximal frequent itemset with the maximal life cycle, 
that is, to compute the number of arrived transactions which may lead the  maximal frequent itemset to 
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infrequent. The maximal life cycle of an  itemset e in the first k transactions D{k} can be computed by  
the ratio of the current support and the minimum support, i.e.,  ML{k}(e)= Λ{k}(e)/ λ. When new 
transaction  Tk+1 arrives, the status of an itemset can be guaranteed by the  updated information: If 
ML{k}(e)>k+1, and e is maximal frequent  before T{k+1} arrives, then it is still maximal frequent; for the  
largest frequent itemset e{L} covered by T{k+1}, if  ML{k}(e{L})<k+1 <= ML{k+1}(e{L}), then it is the new 
maximal  frequent itemset in D{k+1}.   

Max-FISM algorithm Recently, Farzanyar firstly developed a sliding window based algorithm 
named Max-FISM[8]. In this algorithm, an in-memory prefix-tree Max-Set is used to maintain the data 
synopsis. When the sliding window continues, the information of out-of-date transaction will be 
deleted from the Max-Set. In the Max-Set, the nodes are sorted by a novel order, that is, the value of 
the bitmap that the itemset occurs in the sliding window. If new transaction arrives, the Max-Set will 
prune some redundant itemsets with its maximum validity time, which is a measure to indicate an 
itemset will remain frequent without any additional occurrence in the future transactions. When the 
results need to be output, the support of each itemset will be computed and the maximal frequent 
itemsets will be stored in a list, in addition, the minimal infrequent itemsets are also stored in a list for 
further pruning.   

Summary 
This paper reviewed the state-of-the-art algorithms of mining the maximal frequent itemsets when over 
the dynamically changed data.  As can be seen, an index should always be used in these algorithms, 
which can significantly improve the performance.  
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