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Abstract. We present an example of deterministic network models in an iterative fashion. The
network has small-world effect, scale-free topology and high degree of tolerance against random
failure. We propose some new parameters for this model in order to further discuss the damage rate,
such as collapse-rank, fragile-rank, as well as the edge-cumulative distribution and d-degree
cumulative distribution, neighbor degree-average, attracting number. In addition, we compute these
parameters for the model.

Introduction
In the past few years, a number of network models have been proposed to describe real-life complex
networks, the most widely-studied models are the simple and attractive small-world network model
made by Watts and Strogatz (WS model) and scale-free network model proposed by Barabasi and
Albert (BA model), which triggered a sharp interest in the studies of the different properties of
complex networks (Ref. [1], [2], [3], [4], [5], [6]). Obviously, the small-world effect and scale-free
topology are much more general, moreover researchers have done a vast number of investigations to
explore other mechanisms and properties of small-world networks.

Many complex systems display a surprising degree of tolerance against errors. For example,
relatively simple organisms grow, persist and reproduce despite drastic damage deliberately or
environmental interventions, an error tolerance attributed to the robustness of the underlying network,
that is to say, although key components regularly malfunction local failure rarely lead to the collapse
of the entire net-work (Ref. [7], [8], [9], [10]). In reality, some networks are extremely vulnerable to
attacks, such as the World Wide Web, the airplanes connection networks, metabolic networks (Ref.
[12]), social network-s,communications networks (Ref. [14]). So, it is necessary to study the damage
degree and vulnerability degree of network for us.

As known, the main properties of scale-free networks that appear in the existing literature can be
summarized as follows: scale-free networks have scaling (power law) degree distribution (Ref. [13]).
Scale-free networks can be generated by certain random processes, the foremost among which is
preferential attachment, scale-free networks have highly connected hubs that hold the network
together and give the robust yet fragile feature of error tolerance but attack vulnerability (Ref. [13]).
Small-world networks are characterized by three main properties (Ref. [15]). First, their average path
length does not increase linearly with the system size, but grows with the number of vertices or slower.
Second, average vertex degree of the network is small. Third, the network has a high average
clustering (Ref. [1]) compared to an Erdos-Renyi (Ref. [2], [3]) random network of equal size and
average vertex degree. According to the above properties, it have small average path, when the
network is under attack, we can assume that whether it is damage is very big or not? How to picture a
vertex being closely connected with its adjacent vertices? So, we put forward other researches to
probe the nature of real-life complex networks.

Generation of Edge-iteration network models. In this section, we introduce a class of
small-world and scale-free network models investigated in [15] also a similar model appeared in [11].
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This model is constructed in an iterative fashion. We will calculate analytically some relevant
properties for the models. We focus on the analysis of the functions and relations among the new
properties in network models.

Iterative construction.We denote the network model after t step evolution by , and present the
construction algorithm of )(tN as follows (see for examples shown in Fig.1):

Algorithm 1 N-algorithm
Initialization. For 0t , )0(N has three vertices and three edges connecting them to form a
triangle. Each edge of the triangle is defined as the generating edge.

Iteration. For 1t , )(tN is obtained from )1( tN by adding new vertices and edges. Do to
every generating edge of )1( tN , a new vertex is added, which is connected with the endpoints
of the generating edge to form two generating edges of )(tN . The generating edges of )(iN are
not that of )(tN if 1 ti .

Figure 1: The construction of the network at the first four steps of the iterative process

Numbers of vertices and edges of )(tN . The number of edges of )(tN is denoted by )(tne , the
number of vertices of )(tN is written as )(tnv at time step t here after. In the evolution process of the
model )(tN , for each new vertex added, two new edges are created. Therefore, the difference
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For large t it is smaller and approximately equal to 4. We can see that the model )(tN , when t is
large enough, is a sparse graph whose vertices have many fewer connections than is possible.

Topological properties of N(t). We, in this section, focus on the topological behaviors of the
model N(t), such as the power law degree cumulative distribution, the clustering coefficient and the
collapse-rank, fragile-rank, edge-cumulative distribution, d-degree cumulative distribution, neighbor
degree-average, attracting number.

Degree cumulative distribution. The degree cumulative distribution is one of the most
important statistical characteristics of a network. Notice that, the degree of a vertex i is the number of
edges incident from i , and we denoted by ki(t). The degree cumulative distribution Pcum(k) is the
probability that vertex degree greater than or equal to k in the network. By the N-algorithm of N(t), we
have ki(t)=ki(t  1)+2, if tc is the step at which a vertex i is created, then ki(tc)=2 and hence
ki(t)=2(ttc+1). Therefore, the degree spectrum of N(t) is a series of discrete values (Ref. [15]): at time
step t, the number of vertices of degree k=2, 4, 6, …, 2(t1), 2t, 2(t+1), equals to 32t1, 32(t1)1, …,
3  20, 3, respectively. Other values of degrees are absent in the degree spectrum. Due to the
discreteness of this degree spectrum, as 0<<t, we obtain the cumulative degree distribution
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Plug =t+1 1/2 into the above form, we obtain 2/2)( k
cum kP  . Obviously, when the size of the

network is large, the cumulative degree distribution is an exponential power of degree k , so the
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model is exponential. If we regard that t is continuous, so is  . Then we can take
kt ln)3ln/12ln/2(1  , which leads to cr

cum kkP )( , where 6309.2cr . We claim the model )(tN
obeys the power law distribution.

Clustering coefficient. Zhang et al.in [15] computed: As t , 2lnC , which approaches to
a constant value 0.6931, and so the clustering of the model is higher.

Collapse-rank and fragile-rank. The difficulty of repairing those destroyed networks depends
on the key vertices of the model )(tN if it was attacked. As a result, we design two new parameters to
measure about the damage and the fragility of the networks (Ref. [8]). We only think of destroying
the network situation can be divided into two kinds: first, removing the edge of the network; second,
making the network collapse by destroying vertices. In general, the deletion of a subset ))(( tNVX 

will destroy )(tN to collapse. If a subset ))((* tNVX  makes the component number
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|))((|/))(()( * tNVXtNtfrr   to be the collapse-rank and the fragile-rank of )(tN , respectively.

In our network model )(tN , we denote a vertex birth at step i by iv , we find the set
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For a malicious damage, the larger collapse-rank )(tcor shows that the network was broken more
seriously. The smaller fragile-rank )(tfrr indicates that the network has more strong stability when
facing attack.

Edge-collapse-rank and edge-fragile-rank. The deletion of a subset ))(( tNEY  from )(tN
will make )(tN collapse. If a subset ))((* tNEY  makes the component number

))(())(( * YtNYtN   for any subset ))(( tNEY  , we define |))((|/|| * tNEY and
|))((|/))(( * tNEYtN  to be the edge-collapse-rank and the edge-fragile-rank of )(tN . We use symbol

)(tcorE and )(tfrrE to mark them respectively. In the same way, we can also find meet the condition
of *Y , ))((* tNEY  , Clearly, the number of ))((23)())(( * EtNtnYtN t
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The edge-cumulative and d-degree cumulative distributions. Motivated from the cumulative
degree distribution that is an important character of scale-free networks the authors in [8] proposed a
statistic way named as the d-cumulative distribution defined as   )(/)()( tndtndkP diddcum , where

)(knd is the number of vertices of degree d at time step t . We found that the statistic is not exact and
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So, )(~)( kPkP cumecum according to (2). We define a new index named as the degree cumulative

distribution )(kPd
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where )(tnd is the number of vertices having degree d and 0)( ind
v if there are no vertices of

degree d in )(iN . Here, we have 1
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Neighbor degree-average and attracting number. We define the neighbor degree-average
)(xdave of a vertex x by ),(/),()(
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)(tN , )(unei is the set of neighbors of the vertex u in )(tN (Ref. [8]). The attracting number of x is
defined as  


)(
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tyktxkxatt . It has been wanted that the attracting numbers of vertices
follows the linear preferential attachment rule in scale-free networks. A vertex having higher
attracting number means that vertex and its neighbors together can attract new vertices to form new
edges at a new step time. In the following discussion for 0vx  , we have

)1(2/)12()()( 00  ttvattvdave . when 1vx  , we obtain ttvattvdave 2/)12()()( 11  , as ivx  )2( i , we
suppose jv is the one of the neighboring vertices before 2i moment into the network, so,

20  ij ,  )1(2/)122()()( 11  ititvattvdave .

Conclusion
In summary, we have studied a network model, built in an iterative fashion.As known,

real-world networks have scale-free and small-world properties, therefore great effort is necessary in
order to protect them from attacks. Researching the collapse of networks is more and more popular,
but we have no detailed indicators to measure the extent of damage. So, the concepts of collapse-rank
and fragile-rank are verified here. We also studied the neighbor degree-average and attracting
numbers, two parameters can show the importance and position of a vertex in the whole network.
Based on this view we can know which vertex is needed to be protected deliberately when the whole
network is attacked. In addition, such a simple model explains how the malfunctioning of a single
component of a real system can generate a cascading effect, thus causing the entire network to
collapse (Ref. [16], [17], [18]). We believe that the model may help engineers in network
topology-designing and performance analyzing, it may help to understand the small-world
phenomenon and scale-free topology (Ref. [15]), it offers a guidance for us in further studying to
protect real networks. Here, we propose a new parameter )(kPd

cum and show )(~)( kPkP d
cumcum . As

further investigation, we consider some generations of the above parameters on some general
network models.
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