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Abstract. This paper discusses the Heisenberg’s uncertainty principle and windowed uncertainty 

principle associated with 1D linear canonical transform (LCT) and the Heisenberg’s uncertainty 

principle associated with two types of 2D LCT for the first time. These uncertainty bounds are related 

with the transform parameters of LCT. Also, we show that the certainty bounds for the complex 

signals derived by LCT are different with that for the general complex signals in most cases. The 

special cases of these principles in traditional domains are provided as well. On one hand, these new 

uncertainty relations enrich the ensemble of uncertainty principles, and on the other hand, these 

derived bounds yield new understanding of complex signals via Hilbert transform. 

1 Introduction 

Heisenberg’s uncertainty principle plays an important role in mathematics, physics, signal 

processing and information theory and so on. There have been many extensions [1-13] of traditional 

Heisenberg’s uncertainty principle [14-16] in these fields or new transform domains. Recently, there 

are many papers, such as [2-13], involving new various uncertainty principles in new transform 

domains. However, none of them has covered the uncertainty principles associated with Hilbert 

transform in linear canonical transform (LCT) domain, that is to say, the uncertainty principle for the 

complex signals derived by Hilbert transform have not been involved despite of some discussions of 

Heisenberg’s uncertainty principle on new transform for general complex signals [1,3,4,9,12,13]. 

Hilbert transform [14,15] is an elementary tool in signal analysis and is of very much importance to 

communication and time-frequency analysis. The complex signal, derived from Hilbert transform, is 

different from the general complex signal and widely used in many fields such as communication, 

optics and radar theory. Therefore, there is great need to discuss the uncertainty principles for the 

complex signals derived by Hilbert transform. In this paper, we will discuss the uncertainty principles 

for the complex signals derived by Hilbert transform in 1D and 2D LCT domains. Without loss of 

generality and for the sake of simpliness, we assume that all the means are zeros in any domains in this 

paper. 

As the generalization of the traditional Fourier transform (FT), FRFT [16, LCT [16] has some 

properties with its transform parameter and sometimes gives better signal analysis results. More 

details can be found in [16]. Here we only briefly review its definition. 

1D LCT is the generalization of the classical 1D Fourier transform. The LCT of one real function 

),( yxf ( yx, ) is defined as follow: 
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. In this paper 

we assume that the real function ( )f x ( x ) is absolute integrable both in X and Y directions and 

satisfies the Dirichlet condition. In addition it satisfies the Fubini’s theorem. In particular, 

if
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, (1) is 1D Fourier transform multiplied by i .If
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, (1) is 1D reversed Fourier 

transform multiplied by i [16]. 

The paper is organized as follows. Section 2 yields the Heisenberg’s uncertainty principle and the 

windowed uncertainty principle associated one 1D LCT. In section 3 the Heisenberg’s uncertainty 

principles for general complex signals and the Heisenberg’s uncertainty principles for the complex 

signals associated with two 2D LCT are discussed. The last section is the conclusion of this paper. 

2 The Principle of RSA Algorithm 

2.1  1D Generalized Hilbert Transform 

There are some new GHT [17-21] up till now. However, in this paper we will use the definition in 

[26] because it has similar physical sense with that of the traditional counterpart, and in the future we 

will extend the uncertainty principle to other GHT [18-21]. For a real function )(tf ( t R), the 1D 

GHT is defined as follows: 
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The according analytic signal is defined as: 

( ) ( ) ( )A

A

H

H
f t f t if t  .                                                                                                             (3) 

The according LCT of ( )
AH

f t  is 

 ( ) ( ) sgn ( ) 2 ( ) 0
A

A A AH
F u F u i i uF u F u for u     .                                                              (4) 

Therefore, this physical sense here is clearly the same as that of the traditional counterpart: the 

GHT in LCT domain obtains its analytic signal by suppressing the negative components and doubling 

the positive components. In addition, if 
0 1

1 0
A

 
  
 

, the definition reduces to the traditional Hilbert 

transform. In the next we will use this definition in (2)-(4) to explore the uncertainty principles. 

2.2  Uncertainty Principles on 1D Linear Canonical Transform 

In this section we will discuss the uncertainty principles on 1D LCT. Before beginning, we first 

introduce a lemma defined in [16]. 

Lemma 1: If )()()( 21 RLRLtf   and )(tf  is odd, )(uF  is the Fourier transform of )(tf , then 

   2 2 2 2
( ) ( ) ( ) ( ) 9/ 4tf t dt f t dt uF u du F u du

   

   
     .                                                 (5) 

The detailed content can be found in [16]. Based on this lemma, we give another lemma by us in the 

follows. 

Lemma 2: If )()()( 21 RLRLtf   and )(tf  is odd,  ( ),
A B

F u F v  are the LCTs of )(tf  with transform 

parameters 
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We obtain 
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The same result can also be obtained via the relation between FT and LCT [22]. 
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, Eq. (6) reduces to    2 2 2 2
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, (6) reduces to the traditional case. In addition, if 

1 2 2 1
1a b a b  , 

the bound of (6) reduces to 9/4, which shows that the two LCTs are orthogonal. 

Theorem 1: If )()()( 21 RLRLtf   and )(tf  is odd, ( )
AH

f t  and ( )
BH

f t  are the generalized complex 

signals obtained by the LCT of )(tf  defined in with transform parameters 
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Proof: From the definition of LCT, we know that  
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Therefore the theorem is verified. 
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traditional case. In addition, if 
1 2 2 1

1a b a b  , the bound of (7) reduces to 9 4 , which shows that the 

two LCTs are orthogonal. 

Theorem 2: If )()()( 21 RLRLtf   and )(tf  is odd, ( )
AH

f t  and ( )
BH

f t  are the generalized complex 

signals obtained by the GHT of )(tf  defined in [17] with transform parameters 
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The proof is similar with that in [3], which is trivial and ignored here. 
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, the bound of (8) reduces to  
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, (8) reduces to 

the traditional case:    2 2 9
H HST ST

v u    . In addition, if 
1 2 2 1

1a b a b  , the bound of (8) reduces to 9 , 

which shows that the two LCTs are in the orthogonal domains. 

3 Conclusions 

We derive the uncertainty principles associated with GHT for the first time. In 1D case, we discuss 

the Heisenberg’s uncertainty principle and the windowed uncertainty principle for the complex 

signals derived by GHT on LCT, which have different bounds with that of the general complex 

signals. On one hand, these new uncertainty relations enrich the ensemble of uncertainty principles, 

and on the other hand, these derived bounds yield new understanding of complex signals via Hilbert 

transform. In future, we will extend these results to discrete cases. 
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