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Abstract. With knowing the congestion states of end-to-end paths, network Boolean tomography is 
able to identify congestion links without direct monitoring. Most of existing work on network 
Boolean tomography uses the loss-based metric to determine congestion states of paths. However, 
such metric often needs to inject lots of probing traffic into the intervening network in order to obtain 
a better loss measurement. In this paper, we employ the entropy of the delays to characterize their 
congestion states instead. As simulation results demonstrate, the delay entropy exhibits better 
convergence rate than the loss rate with respect to the number of probing packets. 
1 Introduction 

Identifying congestion links is a significant issue in the context of network monitoring and 
troubleshooting. It is important in practice because congestion links would greatly decrease user 
experience and introduce blame on the Internet Service Providers (ISPs), particularly when the 
Service Level Agreements (SLAs) are violated. Network Boolean tomography [1] is an appealing 
method to identify congestion links as it only deploys end-to-end measurements at the edge of the 
networks of interest, and thus it works even when the access to the network-internal elements is not 
available [2]. 

Network Boolean Tomography [1] classifies whether the end-to-end paths' performance is "good" 
versus "congested" (or "bad"), and infers the performance status of the links under Boolean algebra. 
Loss rate is one of the most important metrics that are used to measure the performance of some 
network services and applications. Most existing (network) Boolean tomography methods exploit 
loss rate to classify the Boolean status of links and paths [3-7]. However, in order to ensure 
measurement accuracy, those loss-based methods require a relatively larger number of probing 
packets [8, 9], which means a long measurement period as well as a high chance of introducing more 
serious congestion. Moreover, loss-based methods will not work for many online network 
applications, as their services (e.g., the Internet phone service) often more heavily rely on delays 
rather than losses. 

We attempt to identify the congestion states of paths with their delay distribution instead of their 
loss rate. Based on a discrete delay model [9], we can compute the delay entropy from the end-to-end 
delay measurement. Since the delay measurement has a better convergence performance than loss, 
our delay-entropy based metric also shows to get a better convergence rate than the conventional loss-
based metric. 
2 Network Delay Model and the Entropy Based Metric 

Network Delay Model. Network congestion not only results in great losses to paths or links, but 
also poses significant impacts on their delays. To obtain the discrete delay distribution of a path, we 
first discretize its delay measurements: Given a delay bin width tb , we quantize a delay measurement 

td with a state of / .t ts d b N   When a loss observed or ( 1)t td N b  , we get a maximum delay state
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.N  Let j for jl and k for kp be the random variables of the quantized delay state, where ,j k    (the 
set of natural numbers). We let ( )r jP s  represent the probability for j s  . 

Delay Entropy Model. When a packet traverses a router queue, it will suffer a (queuing) delay. Due to the existence of the cross traffic, the length of the router queue would vary all the time and thus give rise to the randomness of the delays. The delays will vary within a small scope when the cross traffic is light. However, when the cross traffic becomes more intensive (e.g., more underlying traffic flows are on the link or the path,), it will cause the delays to distribute in a larger range and will make them less predictable. I.e., the delays evolve to be more dispersive as the cross traffic becomes more intensive, indicating the link or the path suffers a performance decrease. Therefore, if we could find a metric which can take advantage of such changing patterns shown by the delay distributions, we will be able to use it to evaluate the link or path performance. Fortunately, such a metric could be the Shannon entropy, which is widely used to measure the uncertainty as well as the dispersion degree. The the entropy is defined as following, 
2

0
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                                         (1) 
where ( )jH  denotes the delay entropy for link jl . Accordingly, ( )kH  for path kp is defined in the 
same way above. Characterize Delay Entropy. As in most existing work, we also assume all the network links   are independent with each other. According to [10], we get the following inequality, 

( ), ( ) ( ) ( ) ( ).i j i j i jH H H H H                                                      (2) 
The inequality (2) above describes the relationships of entropy between two independent links il

and path jl . For any one link al on kp , we can derive from (2) another entropic inequality (3), where
k j

j k
 


and j k denotes that j is a successive node of k . The following inequality (3) generally 

describes the relationship between the entropy between the partial links and the entire path: 
,
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Here we further present a brief proof to inequality (3). 
Proof: For the path kp , we select al from{ | }jl j k . Since all the links are independent from each 

other, then
,

( )j
j k j a

Pr 
 and ( )aPr  are also independent. Therefore, we get
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  , according to (2). 

 
We select another bl from { | , }.jl j k j a As in the same way above, we get
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 . And so on and so forth, we select all 

the remained links one by one and finally we can get
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  . Hence, the inequality (3) holds.   
 In practical networks, the cross traffic will somewhat introduce variations to the delays. Then it is barely for the delays of a path or a link to remain constant over time. Therefore, it is reasonable to believe that the equality in (2), (3) could not hold in practice. And as you see, the entropic inequality of (5) generally enables us to choose an entropic threshold for a path, e.g., a possible entropic threshold 
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can be set either as 
,

max{ ( ), ( )}j a
j k j a

H H 
 or ( ).j

j k
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 Here, we set the empirical entropic 

thresholds for each path with
,
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3 Simulation and Evaluation 
Simulation Setup. We conduct simulations in NS-2 [11] to evaluate our scheme with the logical tree topology depicted in Fig. 1. We simulate the cross traffic with the FTP flows and the UDP-based Pareto flows. The loss rates of the good links (congestion links resp.) are set to be less than 0.005 (between [0.01, 0.03] resp.), and the bandwidth utilization rates of the good links (congestion links resp.) are set to be between [0.30, 0.65] (greater than 0.85 resp.). As shown in Fig. 1, the link bandwidths for the edge links and the internal links are 5Mb and 15Mb, respectively.  

 Figure 1. The logical topology is composed of 30 end-hosts and 11 interior nodes. In the NS-2 
simulation, the interior links have a bandwidth of 15Mb while 5Mb for the edge links. 

 Figure 2. The delay entropy vs. the loss rate. In (a), the no. of probing packets increases by 100. And 
for each setup, the simulations are repeated for 100 times and then we average the absolute errors of 
the entropy and the loss rate for all the 29 paths, respectively. In (b), we increase the no. of the traffic 
flows on the link that has a bandwidth of 10Mb. 

Performance Evaluation. In Fig. 2(a), the solid line and the dashed line represent the averaged 
absolute errors of the delay entropy and the loss rate of the 29 paths, respectively. The averaged errors 
of the delay entropy and the loss rate both decrease as the number of the probing packets increase. This 
is because more probing packets will lead more accurately empirical delay distribution and loss 
measurements. In Fig. 2(a), it also demonstrates that the delay entropy has a better convergence rate 
against the loss rate. For an absolute error of 0.1, entropy needs about only 500 probing packets while 
the loss rate requires about nearly 1000 probing packets, which is almost twice as what entropy needs. 
A similar proportion could still be found when the absolute error comes to 0.05. These rely on the 
better accuracy of the delay distribution, which is known to require much less probes than the loss rate. 
In Fig. 2(b), we find both of the entropy and the loss rate become large as the number of the traffic 
flows on a link increases. However, it will result in a failure for the loss-based performance evaluation 
when the link has fewer traffic on it. It is because that the loss rate generally goes zero for a light traffic 
load. 
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4 Conclusions 
In this paper, we deal with the issue of obtaining path congestion states, which are the fundamental 

inputs required by network Boolean tomography to identify congestion links in the intervening 
network. We propose the delay entropy metric to characterize the path state, which as shown in 
simulations can be identified accurately with nearly half less the probes required by the conventional 
loss based metric. 

In the future, further research efforts will first be paid on introducing noise model to the delay 
measurements. And then we will develop a scheme to detect whether a congestion path passes through 
multiple congestion links. 
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