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Abstract.In the past few years, systems biology methods have been widely used to explore the 

mechanism of cancer. Various signaling pathways play the important role in cancer. And a large 

number of computational methods are used to model the signaling pathway. Here, we reviewed 

many existing mechanisms and modeling techniques, which are used to model different signaling 

pathways. Then we introduced the systematic workflow of a system biology approach and some 

fundamental analysis methods. Finally we discuss some known challenges in the process of 

modeling signaling pathways and what we should handle in our future work. 

1 Introduction 

Signaling pathway is usually used to explain important internal cellular communication, the 

change of cell environment, integration of external or internal and to respond the change of signal 

and the transcription activity, metabolism, or other regulatory measures[1]. They are responsible for 

regulating critical cellular processes, such as autophagy, apoptosis, transcription, cell cycle 

progression and proliferation. Abnormal signaling pathways may cause to the diseases. For instance, 

protein tyrosine kinase (PTK) plays an important role in intracellular signal transduction pathways, 

it can affect the cell growth, proliferation and differentiation and the disturbances of the inhibitory 

constraints on kinase activity can lead to tumorigenic PTK signaling[2]. Moreover, the p38 

mitogen-activated protein kinase (p38 MAPK) is the main signal molecule of signal transduction 

process, and plays an important role in the process of development and disease[3, 4]. 
For purpose of understanding the complicated dynamic behavior of signaling pathways, 

researchers have put forward to models from abstract models that underline some key features of 
signaling pathways [5, 6] to detailed models that describe the dynamics of signaling pathways in 
specific organisms[7-10]. Computational models and methods are becoming an integral part of 
molecular biology. They are being used not only to identify cellular components, but also to 
determine how these components interact with one another[11]. 

This article will describes the modeling of signaling pathways and summarize several 
mathematical techniques. 

2 Existing Computational models of signaling pathway 

Ordinary Differential Equation (ODE) models 

The enzymatic reaction products of many signal cascade consisting of a series of signal 
transduction process acts as the next reaction catalytic enzyme. Because the biochemical reaction 
mapped into concentration change with time, we usually use ODE to describe the reactions in signal 
transduction pathways. The reaction (Eq. 1) can be described that the enzyme E reacts with 
substrate S to yield Enzyme-Substrate complex ES which in turn yields product P.  
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Where 1k , 1k   and 2k  are rate constants. The double arrow (↔) means that the reaction is reversible, 
and the single arrow (→) means that reaction can occur in one direction. 
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According the Law of Mass Action[12], the rate of a reaction is relative to the product of the 
concentration of the reactants. By the Law of Mass Action, a group of nonlinear ordinary 
differential equations are used to describe each reactant. 
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Where [S], [E] and [ES] denote the concentration of enzyme, substrate and Enzyme-Substrate 
complex, respectively. 

Recently, significant progress has been made in the area of modeling for better understanding of 
the biological behavior of the cell signaling pathways [13-16]. Several research groups have used 
ODE to analyze the dynamics of signaling networks and generate experimentally testable 
predictions [17-25]. To predict the dynamics of the IGFR network after IGF-1 stimulation in MDA-
MB231 cells, Iadevaia et al.,[26]developed a mass action ODE model consisting of 65 ODEs and 
161 model unknowns parameter. Chen’s mass action model  use 499 ODEs to describe dynamics of 
828 reactions and 229 parameters[27] to reveal input-output behavior of ErbB signaling pathway. 
Hoffmann model consisted of 24 ODEs that described the reaction kinetics equations of the change 
in concentration [28]. The model also has 30 parameters, which come from experimental data, 
literature and estimation. 

In general, the ODE models have been proved to have certain ability to predict and regulatory 

mechanism underlying normal and abnormal signaling [29-31]. However, it is hard to employ 

ODEs to describe the large signaling pathway and difficult to solve these ODEs due to the 

following reasons. First, the initial conditions and constants are sensitive for many mutual 

differential equations. Second, it may not be appropriately considered for the trivial numerical 

values of concentrations of species. Third, the pathway behavior can be affected by the time delays 

in certain cellular processes, such as transcription[32]. 

Hybrid Functional Petri Net (HFPN) Models 

Petri net is a family of powerful discrete event models in parallel with the development of the 
theory of discrete event systems[33] and More formal definitions are given in[34-36]. For example, 
Sackmann et al., [37] proposed systematic model that used qualitative Petri net to analyzes the 
signaling pathways [33]. Miwa et al., [38] developed a discrete Petri net model for the IL-1 
signaling pathway simulation and determined the firing frequency of each transition by applying the 
proposed method for a part of the Petri net model of IL-1 signaling pathway. Hybrid Functional 
Petri Net was firstly developed by Matsuno et.al.,[39] to represent and simulate biopathways. Since 
this study extended the notions of hybrid Petri net[40], functional Petri net[41] and hybrid object net 
[42], it is suited for biopathways modeling[39]. Moreover, Koh et al.,[citation] [11] employed 
HFPN to explore the Akt and MAPK pathways and their crosstalk. In conclusion, time-less discrete 
Petri nets combine an intuitive modelling style with well-founded analysis techniques. And 
structural analysis of Petri nets has indicated significant insights into mechanisms for identifying 
interrelated targetable node sets for interventional treatment [31].  

Agent-Based Models(ABM) 

According [43],agent-based modelling is defined as the combination of single entity which is  
individual component of a system  obeying its own pre-defended rules and reacting to its 
environment and neighboring agents. In agent-based modeling (ABM), each entity is considered to 
be an agent in a multi agent system (MAS) that interacts locally with its neighbors as well as the 
environment [44-46]. For example, Shirazi et.al., [46] presented a multi-agent approach to model 
the MAPK signaling pathway, which defines each substrate in a signaling pathway as an 
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independent entity (agent). And Pogson et al., [43] employ ABM to demonstrate that it is a suitable 
to describe the cellular regulatory events such as the  NF B  pathway.  

As mentioned above, the formal agent-based modelling paradigm have demonstrated useful 
strategy for understanding mechanisms of biological systems. Agents provides a powerful 
framework for more detailed modelling of intracellular signaling pathways [43]. And the ABM has 
greater scope than the ODE, but it is hard to integrate with experimental data to estimate the key 
parameters of ABM. 

Modularization Models 

For the large pathway, it is difficult to estimate the values of the key unknown parameters. The 
common approach to obtain parameters values is from the real experimental measurements and the 
published literature[25]. Unfortunately, since most of the parameters reported in the literatures are 
dependent on experimental conditions, it is necessary to decompose the large pathway into several 
small and independent components for parameter estimation [47-50]. For example, Koh et al., [11] 
developed a decomposition approach for the parameter estimation for HFPN pathway modeling by 
decomposing the HFPN pathway into 6 components, each of which has no more than 25 unknown 
parameter. On the other hand, Peng et al.,[4] proposed a new systems biology approach by 
integrating quantitative LC-MS(liquid chromatography–mass spectrometry)approach  and 
RPPA(reverse phase protein array) experimental Data into the computational pathway model and 
estimate the unknown parameters by modularized factor graph. 

3 Method 

We summarize the signaling pathway modeling procedure as three steps: (1) modeling for 
signaling pathway, (2) the parameter estimation, and (3) the parameter analysis. The detail 
description is in the following. 

A. Signaling pathway modeling 

Model signaling pathway can employ experimental data to put forward the biological hypotheses 
and use the model to show the biological complex behavior. Usually, we develop the mathematical 
model with respect to the structure of the experimental data. 

B. Parameter extimation algorithm 

Parameter estimation is a critical problem in the biological pathways modeling. It is difficult to 
estimate so many parameters in a large pathway for the limited experimental data. Eq.6 can be 
employed for parameter estimation by minimizing the fitness error between the experimental data 
and simulated data. 
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Where
* denotes the objective function of the parameter optimization,
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i jx t 
denotes the protein concentration by time series data obtained by ODE equation 

simulation,
exp

( )
i jx t  denotes the protein concentration by time series data obtained by experiments, i  

represents the protein index, j  represents the time point; M represents the number of proteins and N 
represents the number of time points. 

C. Parameter analysis 

Identifiability analysis 

The identifiability analysis applied the coefficient of variation to confirm whether the parameter 
is identifiable or not [51, 52]. The ratio of the standard deviation to the mean of the estimated values 
is defined as the coefficient of variation[52].If the coefficient of variation for the given parameter is 
smaller than 1, then it is identifiable; otherwise it is unidentifiable.  

106



Sensitivity analysis 

Parameter sensitivity analysis is a tool to quantitatively determine the effect that specific 

parameters on the output. To understand the relationship between system responses and variations in individual 

model parameter values, local parameter sensitivity analysis was performed by the following 

equation[53]: 
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Where is denotes concentration of the critical protein which directly effects the change of cell 

phenotype proteins, iV denote the estimated parameters and  iV  denotes a small change of the 

corresponding parameter. Each of the parameters of the estimated value increased or decreased by 

1%. So sensitivity analysis is used to examine the larger changes of a system for parameter 

sensitivity. 

4 Discussion and Perspectives 

Signaling pathway mechanisms study is important for understanding the disease and multi-drug 
therapies. Because of the complexity of its biological environment and behavior, it is a very 
difficult problem to study the signal transduction pathway. This research reviews a lot of commonly 
used signaling pathway modeling methods. However, since current modeling techniques can not 
completely present the complex behavior of biological systems, the future research work will focus 
on how to simulate the dynamic behavior of the signal path and look for a more effective algorithm 
to optimize the related parameters. 
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