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Abstract. “All trees are graceful” has not been proven. Applying the construction method to
show every generalized Fibonacci caterpillar tree is a set-ordered odd graceful graph
meanwhile every generalized Fibonacci caterpillar tree not only have an odd-elegant labelling
but also possess a super total graceful labelling. On this basis, we prove that the isomorphic
graph of generalized Fibonacci caterpillar tree is a set-ordered graceful graph as well as a
super total graceful graph. Finally, we show each generalized Fibonacci caterpillar sun-tree is a
felicitous graph.

1 Introduction

As everyone know, graph labelling theory plays a important role in coding theory, complex
networks, logistics and other fields. In operations research or systems theory and practice of systems
enginnering. By applying graph labellings, one can divide large systems into subsystems. One, very
often, utilize graph labellings to distinguish vertices and edges between vertices for the sake of
searching certain fast algorithms to simulate efficient transmissions and communications in
information spreading networks. There is a large and growing literature on graph labeling [1]. Rosa [2]
testified if G is graceful as well as overall its vertices are even defrees, and |E(G)=0| or 3 (mod 4).
Cycle C, are graceful if and only if n =0 or 3 (mod 4); paths P,; wheels W, and complete bipartite
graphs K, are graceful whereas complete graphs K, are graceful if and only if n <4. It has been
conjectured that all trees are graceful, it is still an open problem. Rosa contributed various labeling for
solving problems of graph decementation and proposed some entertaining open questions. In 1979,
Bermond [3] made conjecture: all lobster trees are graceful graphs, this conjecture has not been proven
or negated. Sin-Min Lee [4] and others in 1991 proposed a conjecture “Every tree is a felicitous tree”.
This conjecture has the equal theoretical worth to “Every tree is a graceful tree” and also has the same
difficulty to be proved. Both of them are NP-problems that have drew many researchers to be proved
[5-9]. Many scholars attacked mathematical conjectures and made enormons contribution on graph
theory. Theseworks prompt the graph labelling theory fleetly become a dynamic branch of graph
labellings. In other words, graph labelling theory has played a important role in many fields.

In this paper the method of constructing the two graceful labelling proved that a new class of
generalized Fibonacci caterpillar tree and its isomorphic graph is a set-ordered graceful graph, on this
basis and prove that they are also super total graceful graph, then prove the tree 7 stand for the
generalized Fibonacci caterpillar isomorphic graph, if 7 is consist of sun-trees we say that 7 is a
felicitous graph and it is short of GFCST graph.

We employ criterion symbol and technology of graph theory. Graphs make reference to loopless,
no multiple edges, undirected, linked and limited, in addition to elsewise specified. A (p,g)-graph G is
one with p vertices and g edges. The steno symbol [m, n] indicates an integer set {m,m+1,...,n}, where
m and n both are integers with 0<m<n; the mark [s, ¢]° figures an odd-set {s, s+1,...,t}, where s and ¢
both are odd integers with 1<s<t; and the mark [k, /]’ figures an even-set {k,k+2,...,/}, where integers k
and / both are even with 0<k</.

Definition 1.['%!'] The graph G has p vertices and q edges, then we grants a mapping f:V(G)— [0,
2g—1], and for distinct v,u € V(G) which satisfied f{u) # f{v); About for every edges vu of G, there
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correspond label flvu) satisfied fvu)=|f(v)—Au)|, and we can get that f{lvu)=[1, 2¢g—1]° for every
vue E(G). So we name f'is an odd-graceful labeling as well as the graph G is known as odd-graceful.

Definition 2.['2! The G has p vertices and q edges and is a bipartite graph. (V1,V>) is the two
bipartition of G. Suppose G exists an odd-graceful labeling f which satisfieds max {f(y) | y€ Y} <min{f(x)
| xe X}, then we say f'is a set-ordered odd-graceful labeling.

Definition 3.['>!“1 The graph G has p vertices and q edges, then we grants a mapping /:V(G)— [0,
2g—1], and for distinct v,u € ¥(G) which satisfied f{u) # f(v); but for every uve E(G), there correspond
label f{vu) satisfied f{vu)=f(v)+f(u) (mod 2g) as well as f{vu)=[1, 2g—1]°, so we say f'is an odd-elegant
labeling, G is knnown as odd-elegant graph.

Definition 4.['>!61 A total graceful labeling (TGL) of a (p,q) graph G is a bijection f from
V(G)VE(G) to the set {1,2,3,..., p+q} so that f{uv)=|f{u)—f(v)| for all uyve E(G). A TGL is called a super
TGL if AE)={1,2,3,...,q}. A graph that admits a super total graceful labeling is called a super total
graceful graph (STGG).

Definition 5. The graph G has p vertices and q edges, then we grants a mapping f:V(G)—[0, q],
and for distinct v,u € V(G) which satisfied f{v) # f(u). A felicitous labelling called f of graph G satisfied
that for distinct v,ue V(G), f(v) # f{u), and foe every edge vue E(G), there have fvu)=f(v)+fu)(mod q)
and flu)=[0, g—1]. Then we call G is a felicitous graph.

Definition 6. The G has p vertices and q edges and is a bipartite graph. (V1,12) is the two bipartition
of G. Suppose G exists a felicitous labelling f'which satisfieds max{f(y) | ye Y}<min{f(x) | xe X}, now
we named f'is a set-ordered felicitous labelling, G is knnown as a set-ordered felicitous graph, and
write this case as AX)<f(Y).

For a path p=aoaias,...,a,, we add new vertices a;1, aip, ..., ., to each vertex a; by edges aia; with

i=1,2,...,n and j=1,2,....mi{(m; > 0), call such tree a caterpillar tree. For a caterpillar tree 7, if
mi=a,m>=b(a=b>1)and m=m;—2+m;—1 for i>2 hold true, we call T a generalized Fibonacci caterpillar
tree, and denoted by Fi, ao is called the s-head of F,as well as a, , - the L-head of Fi.

Let 7; is a copy of g generalized Fibonacci caterpillar tree £, i=1,2,...,4. Join the L-head 4!, of the

tree 7; with the s-head ;"' of the tree Tj+1 by an edge (i=1,2,...,-1), and joining the L-head of the

tree Ty with the s-head of the tree 71 with an edge. And the resultant tree is named a generalized
Fibonacci caterpillar sun-tree (GFCST).

Fig 1. Generalized Fibonacici caterpillar tree.

2 Main Results

Theorem 1. Every generalized Fibonacci caterpillar tree F, is a set-ordered odd graceful tree.
Proof. Let F, be a generalized Fibonacci caterpillar tree defined Section 1. We label the vertices of
each generalized Fibonacci's caterpillar graphs via a labelling f'established in the following:
Aan)=0; fann)=2q—1, [an)=2q—1-"2(m.—)),je{1,2,...,mn};
Ran-1)=Aan1)=2, fan1, )7 an)+2(mp1—j+1), je{1,2,....mn1};
fan2yAan1. 12, flans, Jfan)-20mua—j+1), je {1.2,...omua);
Ran3y A an21)=2, fans, jJan2)T2(mn3—j+1)je{1.2,...;mn3};
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Rana)y=Rans1)+2, Lana, )= an3)-2(mua—j+1), je{1,2,...,mpa};

fans)=Rana1)=2, fans, j)=Aana)t2(mns—j+1), je{1,2,...,mns};

Aane)=Rans1)+2, fans, j)=Aans)—2(mne—j+1), je{1,2,...,mns};

In general, on the basis of the above, we can easily find the following equation:

Aay=Rai+1,1)-2, fak, j))=Rar+1)F2mu—j+1), je{1,2,...,mi};
Aar1)=Aax 1)+2, fai, ) )=Ra)—2(m1—j+1), je {1,2,...,mp1}.

And then we also find that equation: flax)=fak+1,1)—2, fak, j)y=Rak+1)T2(m—j+1), je {1,2,...,mi}

to show vertices which labeling are odd numbers, so we can note the set make up by this vertices is ¥,

as well as the equation: flax-1)=Aax 1)+2, far1, ))=Aar)—2(mi1—j+1), je{1,2,...,mi1}

to show vertices which labeling are even numbers, so we can note the set make up by this vertices is X.

So that, we can see f(a,)=0, flaoa1)=0 and f(a,,)=2g—1. Clearly, f(x;) is even i €[1,s]; and f(3;) is
odd je[1, t—1], and max{f(x) | xe X}<min{f(y)|y€ Y}. flxi1)<fx;) for ie[1l,s]; fxj+1) < fix)) for je[1,
t—1], and The certification is completed.

Theorem 2. If generalized Fibonacci caterpillar tree F), is set-ordered odd-graceful graph, then it
is odd-elegant graph.

Proof. According to Theorem 1, we know every generalized Fibonacci caterpillar tree F, exsits a
set-ordered odd-graceful labelling f. Now we regulate one new labelling 4 of F), as below:
h(an)=[an)=0; h(an)=2q—fann)=1, h(an;)=2(m,—j)+1,je{1,2,....mi—1};
han-1)=2(q+ 1)~ Aan1), H(an, JAan1.)), j€{1.2,...omn1};
h(an-2)=Ran2),m(an2 )=2q+2(mp2—j+1)—Ran), je {1,2,...,mu2};
h(an3)=2(q+1)fan21), hans ) ans,j), je{1.2,....mas};

(anaY A ana) o (ana, ) =2+ 20ma—j+ DAans), j€ {12, s}
h(ans)=2(q+ 1) anar), h(ans )=Aans,j), je{1.2,....mns};
h(an-6)=fan-6),M(an-6 ))=2q+2(mns—j+1)—fanse), je {1,2,...,mns}.
Above all, we can promote formula to general case:
h(a)=fax), h(ak, )=2q+H2(mi—j+1)—Ran+1), je {1,2,...,m};
h(ar1)=2(q+1)—fak+2 1), hak+1, j)=Rar+1.5), je {1,2,...,mk1}.
Furthermore,
h(a =R ax), h(ai+1, jy=Rar+1, ), j€ {1,2,...,mr1} 1s even. h(ak, j))=2q+2(mi—j+1)—fan+1), je{1,2,....mi},
h(ai+1)= 2(g+1)—flar+2 1) 1s odd. And h(E(F,))=2q—AE(Fy)), EF,))=[1, 2¢—1]°, then we have:
h(E(F»))=[1,2g—1]°. In consequence, / is an odd-elegant labelling of F.(See figure 2)

Theorem 3. Every generalized Fibonacci caterpillar tree F), is the super total graceful tree.

Proof. According to Theorem 1, let fbe a set-ordered graceful labeling of the graph. Then we define
a new labeling g, such that:
g(an)=p:g(ann)=2q—14p, glan )=2q—1-2(m,—j)tp,j€{1.2,...;mn};
g(an-1)=g(an1)—2+p.g(an1,)=g(an)+2(mu1—j+1)+p, je{1.2,...,mu1};
g(an2)=g(an1,)+2+p,g(an2,))=g(an1)="2(mn2—j+1)tp, je{1.2,...;mn2};
g(an3)=g(an2,1)=214p,g(ans,)=g(an2) T 2(mn3—j+1tp, je{1.2,....mas};
glana)y=g(an31)t2+p.g(ans)=g(an3)—2(mp3—j+1)tp, je{1,2,...,mna};

glan=g(ar+1,1)2+p.g(ak, j)=g(an+1)F2(mi—j+1)tpje{1,2,... ,mi}
Hence, g is a super total graceful labeling of F),. The theorem is covered.

Corollary 1. Every generalized Fibonacci caterpillar isomorphic graph is a set-ordered odd
graceful graph also a super total graceful graph.

Theorem 4. Every generalized Fibonacci caterpillar sun-tree (GFCST) is a felicitous graph.

Proof. According the definition 4, let 7; is a GFCST. Let X;,Y; be the bipartition of a bipartite graph
G, so that V(T))=X\vY;, where X;={x;€[1,s]} and Y;={y;e[1,t]} with s+=|T}|. Every T;acknowledges a
set-ordered felicitous labelling f such that: max{f{(x;) | x € Xi}<min{f(y;) | y € ¥;}. Without loss of
generality, we have fixx)=k—1, ke [1, s] and f{y))=j+s—1,je[l, tf] when i €[], n] , join in an edge
between vertex x’ and ¥, and connect x” and x' with an edge, then we can obtain a GFCST in
Theorem 3. Defined a new labelling g for GFCST as follow:

g(x}) :% (st0)(i—1)+k—1,ie[1,n]°, ke[1, 5] ;g(yj) :% (s+t)(n+i)+% 1(i-2)+—-1,ie[1,n], je[1.1;
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g(x,i)=%s(n+l)+% i(s+0)y+12t(n—1)—k, ie[1,n]°, ke[1,s]; g(yj. :% i(s+t)y—r, ie[1,n], je[1.4;
gx ) =g(x)+g(y)),ie[lnl’, ke[ls], je[l.1];
now, it is easily testify the set of vertex labelling satisfies

{g(xp) | ie[Ln]’, ke[Lsyu{g(y)) | ie[ln], je[1,4}=(0, %(Sﬂ)(n—l)ﬂ—l],
and
{g(y)) lie[Ln], je[Lyu{ g(x,) lie[1n], kE[l,S]}Z[% (stt)(n—1)+s, n(s+1)—1]

we notice that the total vertex is not variable in the process of constructing GFCST. Furthermore the
number of edge of GFCST is |(E(G)|=n(s+f) . So we have

gNG)=0, n(s+0)~1]c[0, n(st1)]
and

g(E(ThvTho.. .uTn)Z[% (st)(n—1)+s—1, % (s+1)(3n—1)+s—2]c[0,n(s+1)—1]

Judging by the Definition 4, the labelling of g is a felicitous labelling of GFCST. In other words, the
GFCST is the felicitous graph. (See figure 3)
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Fig 2. An odd-elegant of generalized Fibonacci caterpillar tree F3. Fig 3. A felicitous labelling of GFCST.

3 Conclusions

Cleary, the results, here, are suitable for constructing graceful trees or bipartite graceful trees.
Most of proofs of the results in this note are effective. We have defined a new labelling called
generalized Fibonacci caterpillar tree labelling, in order to study more complex models from
observation and analysis of graphs. First, we validate the generalized Fibonacci caterpillar tree not
only is set-ordered odd graceful tree but also is an odd-elegant garph meanwhile is super total graceful
tree. Besides, we give a proof for illustrating set-ordered odd graceful labellings as well as odd-elegant
labelling and super total graceful labelling. Finally, we provide the method for stating the isomorphic
graph of generalized Fibonacci caterpillar tree labelling sun-tree is a felicitous graph. It could be
available to indicate more complicated grapg labelling that acknowledge graceful labellings and
GFCST-labellings, and to discover some underlying applications of these labellings. As a byproduct it
is easy to distinguish new classes of graceful graphs by using graceful similar systems built upon
known smaller graceful trees, which are gracefully similar. It could be interesting to probe and identify
more related concepts and relationships among them. For example, it could be nice to try to work out
the specific conditions when the graph is a strongly graceful.

At the end of this article, we propose several problems for further research as follows
Problem 1. Adding leaves to the set-ordered odd graceful generalized Fibonacci caterpillar trees,
could we produce the tree is set-ordered odd graceful and an odd-elegant graph ?
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Problem 2. Could we can use the odd-elegant labelling f of generalized Fibonacci caterpillar trees
produce a strong set-ordered odd graceful?

Problem 3. Whether all higher-order Fibonacci caterpillar trees and their isomorphic graphs are
set-ordered odd graceful, also, super total graceful ?

Problem 4. If every Fibonacci caterpillar trees exist a super total magic labeling, furthermore, or

every Fibonacci caterpillar trees admits a super (k, 1)-magically total labelling for some integers k and
A#07?
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