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Abstract.We encounter in real world large networks as diverse as neural networks, power grid, finan-
cial networks, friendship networks, Internet, WWW. These networks are commonly characterized by
a large number of highly interconnected dynamical entities. They are so complex that they may give
birth to many dynamic phenomena. Understanding at the same time the topological and dynamical
aspect of complex networks is an important challenge. In this paper, we review on the fundamental
elements of complex networks study. We include definitions, measurements, models used to analyse
topology and dynamics of these systems. Moreover, we discuss some questions related to mobility
and dynamic community detection in complex systems.

1 Introduction

For a long time, networks have been studied with great importance in many domains that are scien-
tific or not. The study of networks has mostly developed in research fields such as social sciences,
physics, computer sciences and molecular biology. A network is an abstract representation of entities
or elements as regards a domain with nodes (or points) and their relationships (or interactions) with
links called edges. Known in the mathematical field as graph, a network can represent for instance the
rumour spreading in a social network such as the nodes whose individuals and links represent their
diverse relationships, or Internet whose nodes are devices (computers, routers ...) and links are the
cables or the air.

The late 1990s witnessed a boom of research activities around the study of networks said 'complex'
(i.e. networks whose structure is irregular, complex and dynamically evolving in time [12]) which are,
generally, the result of decentralized and planed evolution. Indeed, the study of complex networks has
known dramatic advances sustained by the recent appearance of large databases that allow studying
systematically the topology of various real networks and the increased computing power allows us to
explore networks containing millions of nodes.

Some deficiencies observed in the complex networks modelling based on graph theory has led
researchers to introduce new definitions and metrics, which help us to mimic their structure and their
dynamic evolution. In spite of many models proposed, the problem concerning the dynamic evolution
in a network is a subject which interests researchers in complex networks area. For this reason, we
study, analyse and try to understand the two aspects that are the structure and the dynamic evolution
of complex networks.

This report is divided into four sections organized as follows:
First, in section 1, we give a description of a complex network in order to explain what is the origin
of this science and where do we find it. In section 2, we describe in detail the structure of complex
networks by reviewing the different definitions, notations and metrics, and the different benchmark
models of networks such as random graphs, small world and the scale free. After, in section 3, we
explain how we understand dynamics in a complex network and we propose some approaches used to
model this dynamics. Finally, we exhibit in section 4 some problems and perspectives related such as
mobility and community detection in dynamic networks.
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2 Complex Networks

2.1. Historical background and definition
The study of complex networks have attracted great attention within the scientific community dur-

ing the last decades. The complex network is a part of the great family of complex systems. The notion
of complex systems has interested a large body of researchers such as biologists, physicists, sociolo-
gists, geographers, computer scientists, to name but a few. Everyone studies these systems in different
manners with different tools. Newman in [44] explains that there is no precise technical definition of
a 'complex system' but most researchers in the field would probably agree that it is a system composed
of many interacting parts called 'agents', such that the collective behaviour of those parts together is
more than the sum of their individual behaviours. The collective behaviours are sometimes also called
'emergent' behaviours, and a complex system can thus be said to be a system of interacting parts that
displays emergent behaviour. To quantify such a system, at first, you must specify its topology-who
interacts with whom-and then its dynamic-how the individual agents behave and how they interact
[44].

The theoretical modelling of complex systems can be divided according to Newman between two
approaches [44]. The first involves the creation and study of simplified mathematical models that,
while they may not mimic the behaviour of real systems exactly, try to abstract the most important
qualitative elements into a solvable framework from which we can gain scientific insight. The sec-
ond approach is to create more comprehensive and realistic models, usually in the form of computer
simulations. In this optic, the network become an unavoidable element to model a complex system.

In the recent years, the research in complex networks has known an important event with the works
by Watts and Strogatz on small-world networks [63], in 1998, by Barabási and Albert on scale-free
networks [6], in 1999. Today, these activities constitute a fundamental element for studying and un-
derstanding the properties of a complex network. After these pioneers, a lot of books and articles have
appeared in the literature with themes concerning the structure, as well as the dynamics of networks.

It is important to know what a complex network is. Many definitions of complex networks exist
in the literature; we try to give some relevant definitions to help us to understand about this system.
Newman defines a complex network to be an interacting network between entities, such that the global
behaviour of those entities is not deductible to their individual behaviours, we call this phenomenon an
emergent behaviour [43]. Moreover, in a presentation titled Applications of Complex Networks [13],
Buldú defines a complex network as a network with non-trivial topological features, with patterns of
connection between their elements that are neither purely regular nor purely random. According to
Boccaletti et al., a complex network is a network whose structure is irregular, complex and dynami-
cally evolving in time [12]. All definitions point out the complexity of its topology, we remark also
it is not static but a dynamic system. We can see this dynamic by two sides : the network evolves
then nodes appear and/or disappear in time and the dynamic processes take place inside it such as
spreading of rumour or disease, diffusion, routing and so on. Examples of complex networks include
social networks, power grid, economy networks, chemistry components, neural networks, transporta-
tion networks, epidemic spreading, metabolic pathways, mobile networks, food web, Internet, World
Wide Web etc.

2.2. Real Networks
The real networks are the networks of the real world. Researchers of diverse disciplines have ex-

plored these networks recently. In [43], Newman suggests to subdivide networks by four categories,
which are social networks, information networks, technological networks, and biological networks.
1.2.1. Social Networks. A social network can be defined formally as a set of individuals or social
entities linked through some kind of interactions among them [12]. Their interactions could be as
diverse as friendships, collaborations, sexual contacts or business relationships. The social network
analysis started to develop in the early 1920s with the works of Simmel, Wellman, Bouglé and others.
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Furthermore, it has known a very fast development due to Milgram experience, an American psychol-
ogist, who introduced the 'six degrees of separation' in 1967. A classical example of social networks
is the collaboration network of film actors such that datasets are available in IMBD (Online Movie
Database). In this network, two actors are considered connected if they have played together in the
same film. The statistical properties of collaboration network of film actors have been analysed by
certain authors [4] [1] [2]. Others examples of social networks have also been studied in scientific
community such as co-authors networks in academia, phone call networks, email networks, sexual
contact networks and so on.
1.2.2. Information Networks. According to Newman, the information networks have related to the
classical example of citation networks between scientific papers [43]. Intuitively, we remark that many
articles cite precedent articles on related subjects. In fact, citations between scientific papers constitute
a network whose nodes are papers and it exists a direct edge from node A to node B indicating that
paper A cites paper B. This network is acyclic because one cannot cite an article that does not exist
previously [43]. Redner, studying the distribution of 783, 339 citation papers catalogued by the Insti-
tute of Scientific Information and 24, 296 papers published in Physical Review D between 1975 and
1994, has found that the probability one paper may be cited k times follows the power-law distribution
(pk ∼ k−λ) [55]. The World Wide Web (WWW) with their webpages and hyperlinks constitute the
most interesting information networks studied in the community. The study of the WWW network
have started since the late 1990s with Albert, Jeong, Barabási [5] and Kumar et al. [33].
1.2.3. Technological Networks. Generally, these networks are destined for transportation to service
or energy. The first network studied in this category is the topology of electrical power grid network of
Western States Power Grid in USA [63]. In this category, others networks have been studied includ-
ing air transportation, road traffic, railway transportation. The technological network that has mostly
attracted our attention is the Internet. The Internet is a network composed of computers and others
telecommunication devices, which are connected by cables or waves. The topology of the Internet has
been examined in two levels. At the router level, nodes represent routers and links are the physical
connections between routers. At the inter-domain (or autonomous) level a single node represents each
domain, composed of hundreds of routers and computers, and an edge is drawn between two domains
if there is at least one route that connects them. Faloutsos et al. have studied the Internet at both levels,
concluding that in each case the degree distribution follows a power-law [22].
1.2.4. Biological Networks. Finally, the last category is the biological networks, which concern all
networks related to living beings. The classical example of biological networks is the metabolic path-
ways. In this network, the substrates (ATP, ADP, H2O ...) are considered as nodes and there are links
whether it exist a chemical reaction whose result acts on the substrates. In addition, there are many
important classes of biological networks that have interested the community of complex networks, for
example protein-protein interaction, genetic regulatory networks, neural networks, food web etc.

3 Structure of complex networks

A complex network has a particular structure due to its large dimension (sometimes almost millions of
nodes) and its many interactions, which play an important role in its characteristic. Thus, we introduce
in this section certain definitions, metrics and notations that allow us to better understand the topology
of complex networks. After doing a review of the benchmark models proposed, we show how their
properties are approximately different from real-world networks.

3.1 Definitions, metrics, notations
Complex networks study is essentially based on the concepts of graph theory. These concepts are

not sufficient to do an exhaustive analysis of such system. That is the reason why researchers invent
new tools to complete the study based on graph theory. Here, we define the different concepts used in
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complex networks study.
3.1.1 Graph.Mathematically, a graph G is a couple (V,E) where:

• V is a finite set of object. The elements of V are said nodes or vertices.

• E is a subset of V × V . The elements of E are called edges or links.

A graph can be oriented (called directed graph) or not (undirected graph). Sometimes, it may be
important to quantify the links by giving a value, which represents the strength or the weight then
the graph is said weighted graph. A subgraph G

′
= (V

′
, E

′
) is a graph such that V ′ ⊆ V , E ′ ⊆ E.

We encounter many types of graphs according their structure. A multigraph is a graph such that there
are multiples edges between two nodes. A bipartite graph is defined as a graph whose nodes can be
divided into two separate sets or classes such that every edge links a node of one set to a node of
the other set. A graph is simple whether it is not a multigraph and it does not contain loops, i.e. links
from a node to itself. Basically, a graphG = (E, V ) is exactly equivalent with its adjacent matrix. Let
consider A = (aij), the adjacent matrix of G such that:

aij =

{
1 si (i, j) ∈ E
0 sinon (1)

3.1.2. Degree. In the graphG , the vertex i is adjacent (or connected) to another vertex j if it exists
a link between i and j. It is also common to call connected vertices neighbours. The degree of nodes
is the amount of adjacent links. We denote node degree ki given by the following expression:

ki =
∑
j∈V

aij ; avec aij ∈ A (2)

In case of directed graphs, we use the notions of in-degree kin or out-degree kout of a vertex i. The
in-degree kin of a vertex is defined as the sum of arcs, which have the vertex i as final extremity
whereas the out-degree kout is the sum of arcs which quit the node i. Consequently, the degree ki of
node i may be donated by ki = kin + kout

3.1.3. Connectivity. Joining a node from any other node constitutes a fundamental aspect in real
networks. In a graphG, a walk is defined to be a finite and alternative sequence of vertices and edges,
beginning and finishing by nodes such that each edge is incident with vertices around it. A cycle is a
closed walk. A walk is elementary if all these nodes are distinct whereas a walk is simple if all these
edges are also distinct. A path is a walk whose arcs are oriented as directed graphs. A circuit is only
a closed path.

A graph G = (V,E) is connected if it exists a path between every pair (i, j) of nodes, otherwise
it is disconnected. A connected component stands for a subset of vertices that are connected together.
In other words, a connected graph is a graph that have shaped only maximal connected components.
Moreover, a giant component is a component whose size is of the same order as N . The complete
graphs, i.e. graphs such that all-possible pairs of vertices are joined by edges, present always a con-
nected structure. Hence, a complete graph with N nodes has exactly K = N(N − 1)/2 links. In this
case, G is noted KN . A clique is a complete subgraph.

The DensityD of a graph can be defined as the coefficient of the number of existing edges on the
all-possible edges in the graph. A graphG is said to be dense ifK = O(N2), contrariwise it is sparse
in the case of D ≪ 1 or K ≪ N2. We cannot ignore the role of density in the graph connectivity.
Naturally, most real networks studied in the literature present a sparse structure.
3.1.4. Shortest path and Average path length. The shortest path or geodesic distance is a funda-
mental concept in graph theory. Thus, it plays an important role in transportation and communication
networks for instance routing protocols in networks such as the Internet [12]. Formally, the shortest
path dij from i to j is the minimum distance of all paths that connect i and j. Therefore, the diameter
is defined to be the max geodesic path within the graph, Diam(G) = max(dij).
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The average path length is defined to be the mean of shortest distance between all pairs of nodes
in the graph. It is also named mean geodesic distance. Let consider l to be the average path length,
mathematically we obtain the measure of l by the following formula:

l =
1

N(N − 1)

∑
i,j
i̸=j

dij (3)

where dij is the geodesic distance between i and j and N represents the number of nodes. Unfortu-
nately, this definition is applicable whether the graph is connected i.e. if it exists a path for each pair
of nodes. However, if the graph disconnects the measure of l diverge. For this reason, to avoid this
problem, it is proposed to use the 'harmonic mean' or global efficiency, denoted Eglob [36].

Eglob(G) =
1

N(N − 1)

∑
i,j
i̸=j

1

dij
(4)

Thus, each pair of vertices taken in a disconnected component participate in the quantity of Eglob with
about a null value. We have by definition the inequality 0 ≤ Eglob(G) ≤ 1.
3.1.5. Small world effect. We witnessed for the first time, the birth of small world effects after the
experience did by the social psychologist, StanleyMilgram. Towards 1960s, Milgram took the Frigyes
Karinthy's idea developed in 'Chains' which was written in 1929. The theory said that with any two
people chosen randomly in the world, we have six acquaintances average to connect these two people.
To test this idea, Milgram gave 300 letters to participants living in Omaha then asked them to send the
letters to a change agent living in Boston. The participants must deliver the letter to the target person
directly (hand by hand) or by acquaintances. After the experience,Milgram found that the average path
in a chain of acquaintances such that one person joins another was six. Thus, this experience is called
'six degree of separation' few years later by John Gaure. This discovery has created a revolution, so the
author concluded that the human society has shaped a small world. We understand a small world here
to be a network that every pair of nodes may be reachable by a shortest path [64]. In the literature, the
small world concept refers to the measure of average path length, marked l above. Hence, the average
path length represents the most useful measure in the complex networks analysis. Empirically, it has
been discovered the value l is small in large real networks like random graphs [63] [46] [40] [35].
Moreover, to show the small world effect in disconnected graphs, Latora et Marchiori has proposed
to verify high value of Eglob(G) [36].
3.1.6. Clustering coefficient. The clustering coefficient, called transitivity [12], is a property that
reveals the following phenomenon seen in real networks: if node A is connected to node B and B to
node C then it is more likely that A will also be connected to C. In social science, this phenomenon is
resumed by the famous concept 'the friend of your friend is likely also to be your friend'. In fact, the
root of this idea is founded in the work of George Simmel, which introduces the concept of triad as
a fundamental structure of social networks [64]. A triad represents a social group composed of three
members whereas a dyad is two members. In terms of topology networks, the clustering coefficient
means the high presence of triangle in a network [43]. Two definitions of clustering coefficient exist
in the literature: the global clustering, and the local clustering.

Global clustering. It is defined to be three times the number of a triangle on the number of connected
triples of nodes measured in the graph. Let us consider the graph G, the global clustering coefficient
C1 is given by expression:

C1 =
3× number of triangles in G

number of connected triplets in G
(5)
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Figure 1: Illustration of clustering coefficient: C1 = 3 × 1
8
= 3

8
because we have a single triangle

and eight triplets while all the evaluated local clustering coefficient is C1,2,3,4,5 = {0, 0, 1, 1, 1
6
} which

donate the mean C2 = 13
30

The factor 3 in numerator compensates the fact that each triangle contributes to three triples and
ensures that C1 lies in the range 0 ≤ C1 ≤ 1. If C1 = 1 we have G = KN . The formula 5 can be
rewrite as the following form [43]:

C1 =
6× number of triangles in G
number of paths of length two

(6)

where a path of length two refers to a directed path starting from a specified vertex.

Local clustering. It concerns a particular node i. The local clustering coefficient can be quantified
thus:

Ci =
number of connected triangles to i
number of centred triplets on i

(7)

Watts and Strogatz give this definition above in [63]. Let considered ei to be the number of edges
between neighbours of i and ki the degree of node i. We obtain the equation 7 otherwise.

Ci =
2× ei

ki(ki − 1)
(8)

The aim of local clustering is to calculate the second clustering coefficient C2 that is the mean of Ci

C2 =
1

N

∑
i

Ci (9)

By definition, we have 0 ≤ Ci ≤ 1 and 0 ≤ C2 ≤ 1. The two definitions of clustering coefficient,
C1 and C2, give two different values illustrated for example in figure 1. However, the details of these
differences are explained in [43]. Furthermore, the clustering coefficient have extended in weighted
graphs, for example in the article of Opsahl et Pietro Panzarasa [48]. Another alternative measure of
clustering property in disconnected graph is the local efficiency [36] defined by:

Eloc =
1

N

∑
i∈V

E(Gi) (10)

where E(Gi) is the efficiency Gi evaluated in formula 4. Generally, we noticed that the presence of
triples or triads in random graphs is poorer than real networks where a high clustering coefficient is
observed [64].
3.1.7. Degree distribution. At first, remember that the node degree k is the number of incident edges
that connect this node. P (k) or pk is defined to be the fraction of nodes of degree k on the total number
of nodes in the graph. The term P (k) means also the probability that a node chosen randomly have
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degree k. Thus, we need to plot P (k) of a network by drawing the corresponding histogram with node
degree in X-axis. This histogram is said degree distribution that satisfies the normalization condition:

∞∑
k=0

P (k) = 1 (11)

In the case of directed graphs, we must take into account two kinds of degrees distribution such that
P (kin) and P (kout). The n-moment of degree distribution in a graph is obtained thus:

⟨kn⟩ =
∑
k

knP (k) (12)

If n equals one, we have the first moment ⟨k⟩ corresponding to the mean degree in the graph. The sec-
ond moment ⟨k2⟩ enables to measure the fluctuations of the connectivity observed in the distribution
of nodes. Consequently, the divergence of ⟨k2⟩ in the limit of infinite graph size, radically changes
the behaviour of dynamic processes that take place over the graph [12].

For a long time, we had believed that the degree distribution in many networks followed Poisson
distribution (pk ∼ zke−z

k!
where z = ⟨k⟩), in fact experiences have shown that the majority of real

networks present power-law distribution (pk ∼ k−λ) [43]. This feature implies, in real networks, cer-
tain nodes, which have higher degree play a particular role than lower degree. We call these networks
scale-free.
3.2.8. Assortativity. Indeed, the degree distribution has always been used to determine the statistical
properties in non-correlated graphs. Nevertheless, it is observed that many networks present corre-
lations between different nodes as much as the probability a node with degree k connect to another
node with degree k′ depend on k and k

′ . It reveals necessary to introduce the notion of conditional
probability P (k

′ |k), which is defined to be the probability that an edge originating from the node of
degree k connects the node of degree k′ . P (k

′ |k) satisfies the normalization
∑

k
′ P (k

′|k) = 1 and
the balance condition [12]:

kP (k
′|k) = k

′
P (k|k′

) (13)
If the graph is non-correlated, P (k

′|k) does not depend on k. According to the normalization and the
equation 13, we deduct the follow relation:

P (k
′|k) = k

′
P (k

′
)

⟨k⟩
(14)

In general, the direct evaluation concerning the conditional probabilities measures give some noisy
results, which are difficult to analyse in most of the real networks. To solve this problem, researchers
has proposed to use the average nearest neighbours degree of vertex i. Let us consider the adjacent
matrix of graph G (aij), the average nearest neighbours degree of vertex i, knn,i, is defined thus:

knn,i =
1

ki

N∑
j=1

aijkj (15)

To better interpret the distribution of the correlation of the nodes, we define also the average degree of
the nearest neighbours of a vertex of degree, knn(k), called assortativity of graph. Using the equation
15, knn(k) is given thus:

knn(k) =
1

Nk

∑
i/ki=k

knn,i (16)

whereNk is the number of nodes of degree k. Another definition of assortativity knn(k) can be obtain
by using the conditional probabilities :

knn(k) =
∑
k

k
′
P (k

′ |k) (17)

132



If the graph is not correlated then the above formula 17 gives knn(k) = ⟨k2⟩/⟨k⟩. A correlated graph
is said to be 'assortative' whether knn(k) increase function of k. In other words, the nodes highly
connected tend to bindwith other nodes highly connected. To illustrate it, this characteristic is observed
in most social networks, it's named the popularity. Contrariwise, if knn(k) decrease function of k
the graph is 'disassortative' that means the nodes highly connected tend to join other nodes weakly
connected. We observe particularly this phenomenon in certain networks such as the Internet.
3.1.9. Centrality. The notion of centrality derives typically from the social networks area. Researchers
have pointed out that certain individuals played more important roles than others in a social network.
For instance, some people have more contacts inside the network compared to others [16]. Then, the
measure of centrality allows to quantify the importance of a node in a graph. In fact, the centrality
characterises the robustness or the vulnerability of a network. For example, destroying central nodes
have many consequences on the diffusion of information in a social network. Different measures of
centrality have been proposed in directed or undirected graphs. In 1979, Freeman, in his article titled
Centrality in social networks: Conceptual clarification proposed three definitions of the concept of
centrality: degree centrality, closeness centrality, betweenness centrality [24].

Degree centrality. The idea of this measure is that the central actors are the actors, which have more
links with others. This measure considers the node degree in graph, so it is called the degree centrality.
Considered the graph G = (V,E) with size N , we can define the degree centrality of node i, CD(i)
by:

CD(i) =
1

N

∑
j

aij (18)

where (aij is the adjacent matrix of G. In case of directed graphs, we should consider the in-degree
and out-degree in the calculation of degree centrality. This measure of centrality is local, so it does
not take into account all the structure of the graph. However, it is used in many contexts so far, like
sociology [59].

Closeness centrality. It is the second measure suggested by Freeman. This measure is based on the
idea, which said a node is central if it can quickly interact with all the nodes in the graph i.e. if the
node is between the closeness with other nodes in the graph. In the graph G = (V,E) with size N ,
the closeness centrality is calculate by:

CC(i) =
N − 1∑

j∈V \{i} dist(i, j)
(19)

where dist(i, j) is the distance between i and j. To calculate the distance dist(i, j), many metrics have
been used in the literature. In [24], Freeman proposed to use the geodesic distance. Consequently,
higher is the closeness centrality closer is the node with all other nodes. Thus, this node becomes
central. In the same way, we can extend this formula in directed graph.

Betweenness centrality. The role of the betweenness centrality is tomeasure the usefulness of nodes
to transmit information inside the network. To be more precise, a node having a high betweenness
centrality is a node that passes through it numerous geodesic path (i.e. shortest path) in the graph. For
instance, in information networks, the betweenness centrality is considered as the probability that the
information transmitted between two nodes pass through this intermediate node [16]. We obtain its
value by the following formula.

CB(i) =
∑

j,k∈V,j ̸=k

σjk(i)

σjk

(20)
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Figure 2: A small network with three community structures

where σjk(i) is the number of the shortest path between j and k passing through i and σjk the total
number of the shortest path between j and k. Furthermore, an another measure of betweenness called
edge-betweenness is used by Girvan and Newman to find community structure [45].
3.1.10. Community structure. Finding community structure in networks has early interested the soci-
ologists. Intuitively, in a social network, individuals tend to regroup naturally in communities, which
are constituted friendships, collaborations, hobbies, relationships, and so on. Recently, the study of
community structures in networks has attracted great attention in disciplines as diverse as physics,
biology, computer sciences, etc. Defining a community structure is not easy because there exist many
definitions that are different according to their context [23]. However, a definition largely accepted, re-
lated to the topology of networks, defines a community structure as subgraphwithin which the network
connections are denser than the rest of graphs (Girvan and Newman [45]). This definition indicates the
densification of connectivity inside the internal nodes compared to external nodes such as showing in
figure 2. In perspectives to find community structures in networks, researchers have proposed many
algorithms and others are discovered every day. We remark that all the proposed techniques use gen-
erally the graph partitioning approach and some of these algorithms do not work whether the graph is
disconnected [16].

Among the method of community detection discovered, we have on the one hand the methods
based on traditional techniques of successive division of graphs to subset under the following crite-
rion: the split occurs such that we preserve the more possible link for each cluster created, on the other
hand those which maximize the modularity Q4(partition quality) introduced by Girvan and Newman
[45]. As well as, Palla et al. define another approach of community structure, overlapping community,
which considers that a node can belong possibly in many communities [49]. This approach come more
and more to be used in the algorithms of community detection.

3.2. Models of networks
With the aim to create models that take into account the structure and the dynamics of complex

networks, researchers have invented various synthetic models that help us to analyse their statistical
properties. We focus here on the benchmark models that are Erdős and Rényi model (random graphs),
Watts & Strogatz model (small world) and Albert and Barabási model (scale free).
3.2.1. Random graphs. In 1959, Erdős and Rényi has firstly initiated the study of random graphs in

4if eIJ is the fraction of all edges in the network that link vertices in community I to vertices in community J and
aI =

∑
J eIJ , which represent the fraction of edges that connect to vertices in community I . Then,

Q =
∑
J

(eII − a2I)
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their article titled On Random Graphs [21]. In this paper, the authors proposed the first random graph
model with N nodes and E edges, it is called Erdős Rényi random graph, noted GER

(N,E). This graph
is defined from a graph without edges that is N nodes entirely disconnected. Thus, a pair of nodes is
selected randomly uniform to create an edge until we haveE links. Another alternative model, named
GER

(N,p) equivalent the precedent seemsmostly studied in the community. In this latter, the process starts
withN nodes and every edge is chosen independently with probability p or left with probability 1−p.
As a result, the graph GER

(N,p) is entirely constructed with pE(1− p)N(N−1)/2−E . However, It has been
proved that the complexity to generateGER

(N,p) is O(N2), because you may consider for each couple of
vertex the presence or absence of link, while the complexity to create GER

(N,E) is O(E) [59].
Overall, the characteristics ofGER

(N,p) have often studied function of average degree ⟨k⟩. At the end
of the procedure of generating the random graph, the expected number of edges is ⟨E⟩ = pN(N−1)/2
then we can deduct the average degree thus.

⟨k⟩ = 2⟨E⟩/N =
N(N − 1)p

N
= (N − 1)p ≃ Np (21)

Erdős and Rényi were the first studying the maximum and minimum degree of a random graph while
Bollobás found the complete distribution later in 1981 [4]. In random graph, the probability that a
node i has the degree k = ki follows the binomial distribution with parameters N − 1 and k.

P (k = ki) = Ck
N−1p

k(1− p)N−1−k (22)

where pk is the probability to have k edges, (1− p)N−1−k represent the probability that the remaining
N−1−k attempts have not resulted in a link andCk

N−1 is the number of different ways these edgesmay
be selected. While N → ∞, p → 0, for a fixed ⟨k⟩ value, we have exactly the binomial distribution
which tend to Poisson distribution.

P (k = ki) ≃
⟨k⟩k

k!
e−⟨k⟩ (23)

The reason why this homogeneous distribution is called Poisson Random Graph. Although, this dis-
tribution is exactly different from the real world networks whose distribution follows power law. The
study of random networks reveals an interesting property that is the critical value phenomenon, said
often the percolation. This phenomenon shows the appearance of giant components when we reach a
threshold value of probability, pc = 1

N
, corresponding to the average ⟨k⟩c = 1.

The random graphs design a typical feature founded in real networks, discussed in section 2.1.5
that is small world effect. If we consider Diam(G) as the diameter of a random graph G we obtain
its value around Diam(G) ∼ lnN/ ln(pN) = lnN/ ln⟨k⟩. Consequently, the average path length l
is function of N and has the same behaviour as the diameter, l ∼ lnN/ ln⟨k⟩ ∼ Diam(G). Thus,
the measure of l appears small corresponding the small world effect. Nonetheless, other properties
of random graphs are not similar with those observed in real networks. For example, the clustering
coefficient varies around C = p = ⟨k⟩/N and became small when N is large. In addition, the degree
distribution of such graphs is Poisson, which is opposite to the distributions of majority real networks.
We have also no correlation between the degrees of adjacent nodes and none community structure
[43].

Despite these shortcomings, Bender and Canfield suggest a generalized model, called configura-
tionmodel [9]. The aim of this model is to generate a random graphwith controlled degree distribution,
which may be heterogeneous, i.e. we can force the degree distribution to follow power law. In 1995,
Molloy and Reed define the formalization of this model [39]. In spite of heterogeneous degree, this
model exhibits a small clustering coefficient and it has not any community structure.
3.2.2. Watts & Strogatz model. It is the first model used to model the graphs, which are said small
world. According to Watts and Strogatz, a small world network is characterized to have a high value
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Figure 3: Rewiring procedure of Watts and Strogatz model. After [63]

of clustering coefficient C and a small value of average path length l [63]. The principle is, from a
regular lattice to a random graph we get a graph that presents the small world characteristics. Edges
are rewired according to probability p (see figure 3). Initially, the authors start the process from a reg-
ular lattice, given N fixed nodes ring, in which every node is symmetrically linked to its 2m nearest
neighbours. The nodes are visited one after the other, i.e. each link connecting a node to its neighbours
clockwise is rewired to a randomly chosen node with probability p, and is left in place with probability
1−p. We emphasize that if p = 0we have a regular lattice whereas in case of p = 1, the obtained graph
is completely random and gives a minimum degree equal m. Therefore, between these two extreme
values we regard appearing a graph, which presents the small world effect and a non-trivial clustering
coefficient.

To figure out the small world effect and the clustering in Watts Strogatz model (WS), we must
study the behaviour of clustering coefficient C(p) and the average path length l(p) as function of
rewiring probability p. In case where the ring is regular, the calculation of clustering coefficient gives
a high value, C(0) = (3m − 3)/(4m − 2), which tends to 3/4 while m becomes large. In addition,
the average path length varies around l(0) ≃ N/4m, thus it implies that the regular graph has not
exhibited a small world effect. If p → 1, theWSmodel converges to random graphwithmean geodesic
l(1) ≃ ln(N)/ln(2m) and clustering coefficient C(1) ≃ 2m/N . Hence, between these two steps, we
remark a logarithmic drop in the value of l(p) and a decreasing of C(p) after a noticeable stability in a
large interval of p. The most important thing in this experience for Watts and Strogatz is the rapid drop
of the average path length l(p) whereas C(p) remains constant between an interval of p (see figure
[63]). In fact, according to the authors, the origin of the rapid drop is characterized by the appearance
of shortcuts between nodes. Each shortcut created randomly implies the reachability between every
farther part of the graph. Thus, it has a significant impact in the measure of average path length in
the whole graph. As the original edges are randomly replaced, then the clustering coefficient keeps
similarly the same value that C(0) in a meaningful interval 0 ≪ p ≪ 1. Consequently, the region
where 1/N ≪ p ≪ 1, Watts and Strogatz observe the coexistence of the small value l and a high
value of the clustering coefficient C that represent an important characteristic discovered mostly in
real networks [4]. We can conclude that real networks are not completely random but every two nodes
can be connected between them with few links.

Despite the relevant advances made in the complex networks area, the original WS model suffer
some problems. Firstly, its degree distribution does not correspond to the majority reel networks dis-
tribution, but it is not a surprise, because it was not the aim of this model [43]. Secondly, the fact that
the extremity of an edge is only rewired, any loop does not exist, any other edges can't add between
pairs of nodes, make the calculation of the mean geodesic l in the graph hardly difficult. That is the
reason why many variants of Watts and Strogatz model have been proposed in the literature. Among
them, we have the Newman, Moore and Watts model [46], which reproduces exactly the same model
with the only difference that here we don't replace the existent edges, but new edges making shortcuts
are added between two nodes with probability p.
3.2.3. Scale-free. The scale free networks were firstly studied by Derek de Solla Price in 1965. Price,
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Figure 4: The characteristics of Average path length l and the clustering coefficient C WSmodel [63]

Figure 5: Generated degree distribution by Barabási-Albert model in a network with N vertices and
m = 3

in his article entitled Networks of scientific papers, shows that the network of citations of scientific
papers follows power law distribution [19]. Astonishingly, he found that while the network increases
the degree of the nodes more connected becomes higher than the nodes less connected: he calls this
phenomenon the cumulative advantage. This term is known today as preferential attachment that was
introduced by Barabási and Albert [6]. The idea of Price was that the rate at which a paper gets new
citations should be proportional to the number that it already has. This behaviour is observed in many
real networks as the World Wide Web [43].

In 1999, Barabási and Albert created a model of graph as similar as the model discovered by Price.
Contrarily to Price's model, the Barabási Albert (BA) model uses undirected edges that make to lose
an important information in the network. However, if the nature of edges orientation is ignorant, the
BA model allows overcoming the problem met by Price, i.e. how a paper gets its first citation (or
webpage). Barabási and Albert have studied World Wide Web based on two essential rules: growth
and preferential attachment [6]. These two fundamental rules are used to generate an undirected graph
GBA

(N,E) from a set of vertices with initial size equalm0. Each step t = 1, 2, ..., N−m0 of the algorithm,
a new vertex j with m ≤ m0 edges is added in the network. The probability that a vertex j connects
with an existent vertex i is linearly proportional of degree of i.∏

j→i

=
ki∑
l kl

(24)

The networkwill have, every instant t, a number of verticesN = t+m0 and a number of edgesE = mt
with a mean degree ⟨k⟩ = 2m. Numerical simulations indicate that BA model evolve spontaneously
shaping a power law distribution P (k) ∼ k−λ , with λ = 3 (figure 5). According to the authors, the
origin of power law is essentially due to the preferential attachment that leads to the appearance of
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few groups of nodes highly connected, called hubs. This small presence of hubs makes the network
to be robust against random failures, but fragile to targeted attacks. It is also shown that the average
path l in scale free is fewer than random graphs [4].

l ∼ logN

loglogN
(25)

The Barabási-Albert model is one of the evolving and dynamic model that displays one character-
istic observed in real networks namely power law degree distribution. It is essentially the result of
preferential attachment. Nevertheless, this model yields an arborescent structure that exists rarely in
real networks. Thus, many modifications and extensions have been added to improve it. Among these
variants, Krapivsky and Redner redefine it to directed graphs. They have also examined the existing
relation between the age a of a node i, consisting the number of nodes added after i, and its degree, and
the correlation in degree of adjacent nodes [32]. As a result, they show the number of nodes having
age a with degree k is:

Na(k) =

√
1− a

N

(
1−

√
1− a

N

)k

(26)

Another alternative model is suggested by Barabási-Albert in [3]. This model is based on the following
iterative algorithm: a) m new nodes are added with probability p; b) m edges are rewired with prob-
ability q; c) a new node is added, along with m edges that connected preferentially with m existent
nodes according probability 1−p−q. Similarly, the model of Dorogovtsev-Mendes-Samukhin(DMS)
[20] enables to add the vertices with the following preferential attachment:∏

j→i

=
ki + k0∑
l(kl + k0)

with −m < k0 < ∞ (27)

Krapivsky et al. prove that if we use the generalized preferential attachment
∏

j→i =
kβi∑
l k

β
l

the degree
distribution of the network emerges in power law only if β = 1. The degree distribution is exponential
whether β < 1 whereas a single site connects to nearly all other sites if β > 1 [32].

Besides these benchmark models said above, many others models and variants have been proposed
in the literature. However, because of the complexity of real networks, any of these models does not
take into account all the properties of such system. Understanding at same time the topological and dy-
namical aspect of a complex networks remains an important challenge. Now, certain simulations give
more or less pertinent outcomes in a well-defined framework that can be extended in other domains.

4 Dynamics in complex networks

The dynamics in networks is a crucial problematic in scientific community. In fact, most complex
networks are the locus of many dynamic phenomena. We can see firstly the dynamics such that how
the network evolves, i.e. appearance and disappearance of nodes and/or links, secondly the dynamics
of the processes that take place in the system. The Internet and the World Wide Web have witnessed
their nodes increase exponentially every day and have passed through a continuous flux of informa-
tion [7]. The friendships or contact relationships in a social network can change in time because each
individual may lose or have new acquaintances. In addition, the social networks have taken the place
of the opinion formation, information diffusion, and rumours or epidemic spreading (more details see
[50]). The telecommunication networks such as mobile phone or ad hoc networks allow collecting ev-
ery day a large quantity of data. Another interesting example of evolving networks is a set of wireless
mobile devices (mobile phones, laptops, sensors, ...) that are dispersed in the environment such that
two devices are connected if the distance between twins is lower than a given valueR. In this section,
we try to present two modelling methods to study the dynamics in complex networks: the preferential
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attachment and the time-varying graphs

4.1. Preferential Attachment
The Barabási-Albert model is the first model, which has used the preferential attachment to gen-

erate a time evolving network [18]. At each time step ti, a new node is added with a number of links
m ≤ m0 (m0 is the number of initial nodes). At the end of the process, we obtain a network with ti+m0

nodes andmt links. This model described in details in section 2.2.3 have an invariant structure that is
essentially determined by preferential attachment according to the authors. This is the origin of het-
erogeneous degrees in the network. The preferential attachment appears to be the inspiration of most
dynamic graph models studied in complex networks community (see [27] [51] [18] [37]).

4.2. Time varying graphs (TVG)
Time varying graphs (TVG) or temporal graphs are defined as sequences of snapshots of static

graphs evolving at each time step ti. In spite of the difficulty to take into account the dynamics in a
complex system, this type of graph is an adaptable mean to study the dynamic evolving in networks.
We have found many acceptable descriptions of TVGs in the literature. According to Harary et al., if
we add in the definition of graph G described above, the function f defined in a set of vertices by:
f : V −→ N and the function g defined in a set of edges by: g : E −→ N , then a temporal graph
G = (V,E, f, g) isn't nothing else the modification of one of these parameters in time [26]. Casteights
et al. give a clear presentation concerning the TVGs in [14]. Formally, they consider a temporal graph
G = (V,E, τ, ρ, ζ) is defined such that: a set of entities V (nodes), and a set of ties E between entities
(links), and a set of label L (i.e. a label l could represent link's force, social relationship intensity or
type of carrier in a transportation network) such E ⊆ V × V ×L , and a lifetime of the system τ ⊆ T
(T represent time-scale which can be N for discrete-time systems or R for continuous-time systems),
and a presence function ρ : E× τ −→ {0, 1} that indicates the given edge is available at a given time,
and finally the latency function: ζ : E × τ −→ T which stand for the delay it takes to cross a given
edge if starting at a given date. On the one hand, the point of view of links the dynamic notion is given
by the variation of the presence function ρ and the latency function ζ . On the other hand, you can see
it as a successive changing of neighbours of nodes. In fact, this definition is somewhat general; it can
describe a multitude of scenarios such as transport networks, information networks, social networks
and so on. However, it may be contextualised about the domain that we need to study.

In the framework of a temporal network, we can add some important notions. The characteristic
dates of a link e corresponds to the sequence of time t1, t2, t3, .... The sequenceSτ (G) = sort(∪{Sτ (e) :
e ∈ E}), called set of characteristic dates of graph G , defines the sequence of dates when topological
events (appearance/disappearance of an edge) occur in the system. Each topological event can be seen
as the transformation of the static graph every time step. Thus, an evolving graph G can be exactly
defined as a sequence of static graphG1, G2, G3, ..., whereGi corresponds to a static snapshot of G at
each time step ti ∈ Sτ (G). A dynamic graph can be represented simply by one of these two structures
(G,SG, Sτ ) or (G,SG,N) in discrete time.

The concepts of distance, shortest path, small world effect, clustering coefficient, centrality, and
community structure observed in static graphs have been extended in TVGs. For instance, in [61]
the authors redefine the measures of temporal-correlation coefficient C, characteristic temporal path
length L, and temporal global efficiency Eglob studying the small world effect in TVGs. Moreover,
Scelato et al. proposed temporal efficiency and the concept of temporal robustness as convenient
measures that enable to examine the resilience in opportunist mobile networks [58]. The spreading or
dissemination of information, rumour or epidemic is in an interested problem in dynamic networks.
Karsai et al. use the TVGs showing how the weight of a link constraint the rumour spreading within
a social group [30]. Other research works try to improve the time-varying graphs modelling to better
understand the dynamic phenomena observed in complex networks [66] [17] [60] [8] [52].
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5 Problematics and Perspectives

The complex systems are generally the place that occur many emergent phenomena. Understanding
the origin of these phenomena is a crucial problem, which has attracted the attention of researchers. In
fact, the themes studying the micro and macro-meso scale have been developed in complex networks
area. We have witnessed many advances, but they have mostly interested the static aspect than the
dynamics aspect. Today, the availability of new sources of datasets (mobile phones records, online
social networks, GPS, sensors, Bluetooth traces etc.) combined with the new modelling approaches
(TVGs, variants of attachment preferential, multiplex networks) open new research opportunities in
the question of dynamics in complex networks. Here we will see the research perspectives such as the
mobility and community detection in dynamic networks.

• Mobility. The mobility in networks is a theme that has mostly interested the MANETS (Mobile
Ad hoc Networks) area that the first models have been developed. The suggested models can be
separated by two main classes: the synthetic models based on mathematical equations that try
to capture the mobile motion in a simulation area [29] [42] [38] [10], and the models based on
traces (logs, traceroute, geolocation etc.) obtained from systems deployed in the environment
[31] [56] [28] [62]. The typical problematic in this domain is how to reconcile these two models
to have a model which imitates human mobility, i.e. to create synthetic models from traces.
Thus, we may ask these questions: What are the elements, which characterize human mobility?
How to integrate the use of connectivity and mobility model so that we find the characteristics
of human mobility [41]? As the captured traces can be heterogeneous by their sources or their
formats, how to integrate them to take into account all kinds of scenarios of mobility existing in
the real world? How to take into account the mobility model in dynamical processes occurring
on networks such as epidemic spreading?

• Community detection in dynamic networks. The structure of the community is the notion that
has been mostly studied in complex networks. Since the Newman and Girvan [45] many others
algorithms of community detection continue to appear in the literature [53] [57] [34] [54] [11].
Unfortunately, the majority of them focuses on the case of static networks. Notwithstanding
the efforts provided in the community detection in dynamic networks, the research activity in
this domain is still an open area [25] [15] [47] [65]. Online social networks such as Facebook,
Twitter, and LinkedIn witness every day communities that appear, expand, or disappear. This
lead us to ask these following questions: How these communities evolve in time?What are their
influences in dynamic phenomena that take place inside the network? In other words, what is the
impact of community structure in the disease or rumour spreading, the diffusion or sharing of
information, robustness or fragility of a network, routing protocols? How to visualize accuracy
an evolving dynamic community?

Conclusion

The modelling of complex networks remains a delicate problem because of the complexity, which can
occur in the structure and dynamics of these networks. However, numerous efforts have been made
in the last decade. Considering that, the motivation of this research does not consist in making an
exhaustive study for all the elements speaking in complex networks, but we have aimed to introduce
essentially the fundamental concepts that will allow us to understand the structure and the dynamics in
these networks. Additionally, we have discussed some perspectives, which can interest the scientific
community.
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