Some properties on the homomorphism of groups

Chang Xiufeng^{a*}, Hai Jinke^b and Huang Xurong^c

School of Mathematics and Statistics, Qingdao University, Shandong 266071, P.R.China ^a1018402779@gg.com, ^bhaijinke@gdu.edu.cn, ^c1376882875@gg.com

Keywords: normal endomorphism; morphic endomorphism; morphic group; dual homomorphism

Abstract. In this paper, based on the basic of morphic groups and quasi-morphic groups, we defined a new kind of homomorphism with some properties, called dual homomorphism. We give a necessary and sufficient condition of the dual homomorphism. Moreover, we get a connection between the dual homomorphism and the structure of groups.

1.Introduction

W.K.Nicholson and M.F.Yousuf [1] have defined the concept of the morphic endomorphism, and applied this concept to the structure of ring. In 2010, Y.Li, W.K.Nicholson and L.Zan [2] applied the morphic endomorphism to the group structure, and gave some important connections between them. Q.Wang and K.Long [3] have generalized the concept of the morphic endomorphism on quasi-morphic, and showed that all finite abelian groups are quasi-morphic groups. In this paper, based on the basic of morphic groups and quasi-morphic groups, we continue to study a new group homomorphism with some properties, which is called dual homomorphism. Furthermore, we get that dual homomorphism is a generalization of morphic endomorphism, while it is different from quasi-morphic. And we studied some properties of dual homomorphism.

2. Notations and Preliminaries

In this paper, if G is a group, we write End(G) for the set of endomorphism of G and write Aut(G) for the group of automorphisms of G. Let G_1 and G_2 be groups, we write $Hom(G_1, G_2)$ for the set of homomorphism of G_1 to G_2 , and $Iso(G_1, G_2)$ for the isomorphism. If $\alpha \in End(G)$, denote the image of group G under the α by G^{α} , and denote the kernel of α by $Ker(\alpha)$. Moreover, other notations are mostly standard, please refer to [4].

Definition 2.1 Let G_1 and G_2 be groups, $\varphi \in Hom(G_1, G_2)$ is called normal homomorphism if $G_1^{\varphi} \triangleleft G_2$. In particular, we call φ is normal endomorphism of G_1 if $G_1 = G_2$.

Definition 2.2 let G be a group, $\alpha \in End(G)$ is called morphic endomorphism if it satisfies the condition of $G^{\alpha} \triangleleft G$ and $G/G^{\alpha} \cong Ker(\alpha)$. Moreover, G is called morphic group if every normal endomorphism α of G is morphic endomorphism.

Definition 2.3 let G be a group, the normal endomorphism α of G is called quasi-morphic if there exists normal endomorphism β and γ such that $Ker(\alpha) = G^{\beta}$ and $G^{\alpha} = Ker(\gamma)$.

Definition 2.4 Let G_1 and G_2 be groups, $\alpha \in Hom(G_1, G_2)$ is called dual homomorphism if there exists $\beta \in Hom(G_2, G_1)$ such that $Ker(\alpha) = G_2^{\beta}$ and $Ker(\beta) = G_1^{\alpha}$. Moreover, we say that G_1 and G_2 are dual if every $\alpha \in Hom(G_1, G_2)$ is dual homomorphism.

As a direct corollary of Definition 2.4, we have

Corollary 2.5 Assume G_1 and G_2 are dual, if $G_1 = G_2$, then G_1 is a morphic group.

Proof Suppose $\alpha \in Hom(G_1, G_2)$, since G_1 with G_2 are dual, then α is a dual homomorphism. According to the definition of dual homomorphism that there exists $\beta \in Hom(G_2, G_1)$ such that $Ker(\alpha) = G_2^{\ \beta}$ and $Ker(\beta) = G_1^{\ \alpha}$, thus $G_1^{\ \alpha} \triangleleft G_2$ and $G_2 / G_1^{\ \alpha} \cong Ker(\alpha)$. By $G_1 = G_2$, which implies that $G_1^{\ \alpha} \triangleleft G_1$ and $G_1 / G_1^{\ \alpha} \cong Ker(\alpha)$. Hence α is a morphic of G_1 . So G_1 is a morphic group.

Proposition 2.6 Let α be a quasi-morphic of G, which means that there exist normal endomorphism β and γ such that $Ker(\alpha) = G^{\beta}$ and $G^{\alpha} = Ker(\gamma)$. If $\beta = \gamma$, then α is a dual homomorphism.

Lemma 2.7^[4] Let $K \triangleleft G$ and $\alpha \in Aut(G)$. Write $K^{\alpha} = \{k^{\alpha} \mid k \in K\}$. Then $K \cong K^{\alpha} \triangleleft G$ and $G \mid K \cong G \mid K^{\alpha}$.

Lemma 2.8^[4] Let $\varphi: G \to H$ be a homomorphism and let $K = Ker(\varphi) \triangleleft G$. Let γ be the natural homomorphism of G onto G/K. Then there is an injective homomorphism $\psi: G/K \to H$ such that $\varphi = \gamma \psi$. In particular, $Im(\varphi) \cong G/Ker(\varphi)$.

3.Main Results

Theorem 3.1 Let G_1 and G_2 be groups and let $\varphi \in Hom(G_1, G_2)$. Then φ is dual homomorphism if and only if $G_1^{\varphi} \triangleleft G_2$ and $G_2 / G_1^{\varphi} \cong Ker(\varphi)$.

Proof Suppose φ is dual homomorphism, then these exists $\beta \in Hom(G_2, G_1)$ such that $Ker(\varphi) = G_2^{\beta}$ and $Ker(\beta) = G_1^{\varphi}$. Moreover, $Ker(\beta) \lhd G_2$, we get $G_1^{\varphi} \lhd G_2$. By Lemma 2.8, we have $G_2 / G_1^{\varphi} = G_2 / Ker(\beta) \cong G_2^{\beta} \cong Ker(\varphi)$, thus $G_2 / G_1^{\varphi} \cong Ker(\varphi)$.

Conversely, suppose that $G_1^{\varphi} \triangleleft G_2$ and $G_2 / G_1^{\varphi} \cong Ker(\varphi)$, then there exists an isomorphism $f: G_2 / G_1^{\varphi} \to Ker(\varphi)$. Let $\beta: G_2 \to G_1(g^{\beta} = (\overline{g})^f$, for every $g \in G_2$, $\overline{g} = gG_1^{\varphi}$). It is easy to prove that β is well defined. Since f is an isomorphism, it is obvious that $(gh)^{\beta} = (\overline{gh})^f = (ghG_1^{\varphi})^f = (gG_1^{\varphi})^f (hG_1^{\varphi})^f = g^{\beta}h^{\beta}$ for arbitrary $g, h \in G_2$, then $\beta \in Hom(G_2, G_1)$. Furthermore, we have $G_2^{\beta} = (G_2 / G_1^{\varphi})^f = Ker(\varphi)$ and

$$Ker(\beta) = \{g \in G_2 \mid g^{\beta} = 1\} = \{g \in G_2 \mid (gG_1^{\varphi})^f = 1\} = \{g \in G_2 \mid gG_1^{\varphi} = G_1^{\varphi}\} = G_1^{\varphi}$$
(1)

Hence, φ is dual homomorphism by Definition 2.4.

Corollary 3.2 Let G_1 and G_2 be groups, $\varphi \in Hom(G_1, G_2)$. Then the following two statements are equivalent.

(1) φ is dual homomorphism.

(2) These exists $\beta \in Hom(G_2, G_1)$ such that $Ker(\varphi) \cong G_2^{\beta}$ and $Ker(\beta) = G_1^{\varphi}$.

Proof Suppose φ is dual homomorphism, then these exists $\beta \in Hom(G_2, G_1)$ such that $Ker(\varphi) = G_2^{\beta}$ and $Ker(\beta) = G_1^{\varphi}$. It is clear that $Ker(\varphi) \cong G_2^{\beta}$ and $Ker(\beta) = G_1^{\varphi}$.

Conversely, if there exists $\beta \in Hom(G_2, G_1)$ such that $Ker(\varphi) \cong G_2^{\beta}$ and $Ker(\beta) = G_1^{\varphi}$. It is obvious that $G_1^{\varphi} \triangleleft G_2$. Moreover, it is enough to show that $G_2 / G_1^{\varphi} = G_2 / Ker(\beta) \cong G_2^{\beta} \cong Ker(\varphi)$ by Lemma 2.8. Then φ is dual homomorphism following Theorem 3.1.

Corollary 3.3 Let G_1 and G_2 be groups and let $\alpha \in Iso(G_1, G_2)$. Then α is dual homomorphism. **Proof** Since $\alpha \in Iso(G_1, G_2)$, $Ker(\alpha) = 1$ and $G_1^{\alpha} = G_2$. Thus $G_1^{\varphi} \triangleleft G_2$ and $G_2 / G_1^{\varphi} \cong Ker(\varphi)$. According to Theorem 3.1, α is dual homomorphism.

Theorem 3.4 The composition of dual homomorphism is not necessary dual homomorphism. **Proof** Let $G = C_2 \times C_4$, write $C_2 = \langle x \rangle$ and $C_4 = \langle y \rangle$. Suppose that $\pi: G \to G$ $((x, y)^{\pi} = (x, 1))$ and $\gamma: G \to G((x, y)^{\gamma} = (y^{\theta}, x^{\sigma}))$ are distinct homomorphisms of G, where $\theta: C_4 \to C_2$ by $(y^k)^{\theta} = x^k$ and $\sigma: C_2 \to C_4$ by $(x^k)^{\sigma} = y^{2k}$ are homomorphisms. It is obvious that $G^{\pi} \triangleleft G$ and $G/G^{\pi} \cong C_4 \cong Ker(\pi)$, then π is dual homomorphism. Similarly, it is easy to get $G^{\gamma} \triangleleft G$ and $G/G^{\gamma} \cong C_2 \cong Ker(\gamma)$, thus γ is dual homomorphism. Note that $\pi\gamma: G \to G((x, y)^{\pi\gamma} = (1^{\theta}, x^{\sigma}) = (1, x^{\sigma}))$ is well defined by the definition of π and γ . Therefore $G^{\pi\gamma} = 1 \times C_2 \triangleleft G$ and $Ker(\pi\gamma) = \{(x, y) \in G \mid (x, y)^{\pi\gamma} = 1\} = \{(x, y) \in G \mid (1, x^{\sigma}) = 1\} = 1 \times C_4$.

Since $G/G^{\pi\gamma} \cong C_2 \times C_2$ and $Ker(\pi\gamma) = 1 \times C_4$, $G/G^{\pi\gamma}$ is not isomorphic to $Ker(\pi\gamma)$. Hence, $\pi\gamma$ is not dual homomorphism.

Corollary 3.5 Let G_1, G_2, G_3 be groups. Suppose that $\varphi \in Hom(G_1, G_2)$ is a dual homomorphism and $\psi \in Hom(G_2, G_3)$ is an isomorphism. Deduce that $\varphi \psi$ is a dual homomorphism of G_1 to G_3 . In particular, if $\psi \in Aut(G_2)$, then $\varphi \psi$ is a dual homomorphism of G_1 to G_2 .

Proof Since $\varphi \in Hom(G_1, G_2)$ is a dual homomorphism, it is clear that $G_1^{\varphi} \triangleleft G_2$ and $G_2 / G_1^{\varphi} \cong Ker(\varphi)$. Because ψ is an isomorphism, it is enough to show that $\varphi \psi \in Hom(G_1, G_3)$ and $(G_1^{\varphi})^{\psi} = G_1^{\varphi \psi} \triangleleft G_2^{\psi} = G_3$. Following Lemma 2.7 and ψ is an isomorphism, then $G_3 / G_1^{\varphi \psi} \cong G_3 / G_1^{\varphi} \cong G_2 / G_1^{\varphi} \cong Ker(\varphi)$. Now we just prove that $Ker(\varphi) = Ker(\varphi \psi)$. Actually, for arbitrary $x \in Ker(\varphi)$, $x^{\varphi} = 1$. So $x^{\varphi \psi} = 1^{\psi} = 1$, hence $x \in Ker(\varphi \psi)$, thus $Ker(\varphi) \subseteq Ker(\varphi \psi)$. Similarly, we have $y^{\varphi \psi} = 1$ for arbitrary $y \in Ker(\varphi \psi)$, then $y^{\varphi \psi} = y^{\varphi} = 1$, $y \in Ker(\varphi)$, thus $Ker(\varphi) \supseteq Ker(\varphi \psi)$. We have $G_3 / G_1^{\varphi \psi} \cong Ker(\varphi) = Ker(\varphi \psi)$. By Theorem 3.1, $\varphi \psi$ is a dual homomorphism of G_1 to G_3 .

In particular, if $\psi \in Aut(G_2)$, let $G_3 = G_2$. Similarly, we get that $\varphi \psi$ is a dual homomorphism of G_1 to G_2 .

Theorem 3.6 Let G_1, G_2, H_1, H_2 be groups. Moreover, suppose that $G_1 \cong G_2$ and $H_1 \cong H_2$. If G_1 and H_1 are dual, then G_2 and H_2 are dual.

Proof Let $\varphi: G_1 \to G_2$ and $\psi: H_1 \to H_2$ be distinct isomorphisms. Suppose that β is a normal homomorphism of G_2 to H_2 . We will prove that $H_2/G_2^{\ \beta} \cong Ker(\beta)$. Obviously, $\varphi\beta\psi^{-1} \in Hom(G_1, H_1)$. Since G_1 and H_1 are dual, it follows that $G_1^{\ \varphi\beta\psi^{-1}} \triangleleft H_1$ and $H_1/G_1^{\ \varphi\beta\psi^{-1}} \cong Ker(\varphi\beta\psi^{-1})$.

Let $\theta: H_1 \to H_2/G_2^{\beta}$ ($x^{\theta} = x^{\psi}G_2^{\beta}$, $x \in H_1$). Then θ is well defined, and it is easy to check θ is a surjective homomorphism. By Lemma 2.8, $H_1/Ker(\theta) \cong H_2/G_2^{\beta}$ and

$$Ker(\theta) = \{x \in H_1 \mid x^{\theta} = 1\} = \{x \in H_1 \mid x^{\psi} G_2^{\beta} = G_2^{\beta}\} = \{x \in H_1 \mid x \in G_2^{\beta \psi^{-1}}\} = G_1^{\varphi \beta \psi^{-1}}$$
(2)

Thus $H_2 / G_2^{\beta} \cong H_1 / Ker(\theta) = H_1 / G_1^{\varphi \beta \psi^{-1}} \cong Ker(\varphi \beta \psi^{-1}).$

Let $\Phi: Ker(\varphi\beta\psi^{-1}) \to Ker(\beta)$, where $x^{\Phi} = x^{\varphi}$. For any $x \in Ker(\varphi\beta\psi^{-1})$, $x^{\varphi\beta\psi^{-1}} = 1$. Since ψ is isomorphism, $x^{\varphi\beta} = 1$. We obtain $x^{\varphi} \in Ker(\beta)$, i.e. Φ is well defined. For arbitrary $x_1, x_2 \in Ker(\varphi\beta\psi^{-1})$, since φ is isomorphism, we have $(x_1x_2)^{\Phi} = (x_1x_2)^{\varphi} = x_1^{\varphi}x_2^{\varphi} = x_1^{\Phi}x_2^{\Phi}$. Hence, Φ is homomorphism. For any $y \in Ker(\beta) \le G_2$, there exists $x \in G_1$ such that $x^{\varphi} = y$. Since $x^{\varphi\beta\psi^{-1}} = ((x^{\varphi})^{\beta})^{\psi^{-1}} = (y^{\beta})^{\psi^{-1}} = 1^{\psi^{-1}} = 1$, it follows that $x \in Ker(\varphi\beta\psi^{-1})$. So Φ is surjective. Furthermore, $Ker(\Phi) = \{x \in Ker(\varphi\beta\psi^{-1}) | x^{\Phi} = x^{\varphi}\} = 1$. So we have that Φ is injective. Therefore

 Φ is an isomorphism. Thus $H_2/G_2^{\ \beta} \cong Ker(\beta)$, i.e. G_2 and H_2 are dual. The following corollary identifies a direct result of theorem 3.6.

Corollary 3.7 Let G_1 and G_2 be two isomorphic groups. If G_1 is morphic group so is G_2 .

References

[1] W. K. Nicholson and E. Sánchez Campos, Rings with the dual of the isomorphism theorem, J. Algebra, 271(2004) 391-406.

[2] Y. Li, W. K. Nicholson, L. Zan, Morphic groups, J. Pure Appl. Algebra, 214 (2010) 1827-1834.

[3]Q. Wang, K. Long and L. Feng, The Quasi-Morphic property of group. Bulletin of the Iranian Mathermatical Society, Vol. 39, No. 1 (2013) 175-185.

[4] J. S. Rose, A Course on Group Theory. Cambridge University Press, Cambridge, 1978.

[5] R. Kellil, Some propreties on morphic groups. Pure Mathematical Sciences,

Vol. 2, No. 2 (2013) 55-68.

[6]W. R. Scott. Group Theory. Prentice-Hall, 1964.

[7] Y. Li and W. K. Nicholson, Ehrlich's theorem for groups, Bull. Austral. Math. Soc. 81 (2010) 304-309.