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Abstract. In this paper, based on the study of f-distributor in [1], we defined the concept of f-center 

and discussed some properties of f-center. As an application of these properties, we generalize some 

properties of p-center and center of groups. 

1 Introduction 

I. Hawthorn and Y. Guo put forward the concept of f-distributor in [2], and some basic properties 

about f-distributor are discussed. Let G  be a group, the center of G  is defined to be  

( ) { | [ , ] 1,  for all }Z G g G g x x G    . 

The p-center of G  is defined to be 

( ) { | [ , ] [ , ] 1,  for all }p p pZ G g G g x x g x G     . 

Let :f G G  is a function, and (1) 1f  . Then the f-center of G  is defined as 

( ) { | [ , ] [ , ] 1,  for all }f f fZ G g G g x x g x G     . 

 In this paper, we give the relationship between f-center of a group, p-center of a group and 

center of a group. First, the f-center of G  is a subgroup of G . In addition, we have promoted some 

famous results. For example, let G  be a group, if / ( )G Z G  is cyclic then G  is abelian group. On 

the other hand, note that [ , ] 1g x  , which implies that [ , ] 1x g  . If [ , ] 1fg x  , but [ , ] fx g is not 

always equal 1.  

2 Notation and Preliminaries 

In this section, we first fix some nation and then record some lemmas that will be used in the 

sequel. Throughout this paper, p always denotes a prime number, Z  the ring of integers. Z 
 is the 

additive group of Z . ( )Aut G  denotes the set of all automorphisms of G  forms a group with 

respect to composition of maps. H char G  denotes that H  is characteristic in G . Moreover, other 

notations are mostly standard, please refer to [1] and [3]. 

In this paper, we present some results which will be used in the proof of the main theorems. 

Definition 2.1. Let G  be a group, if ( ) p p pxy x y , for all ,x y G .Then G  is called a p-abelian 

group.  

Definition 2.2. Let G  be a group. Then the p-commutator of x  and y  is defined as 

[ , ] ( )p p p

px y x y xy  , for all ,x y G . 

Definition 2.3.  Let G  be a group. Then the commutator of x  and y  is defined as 
1 1[ , ]x y x y xy  , for all ,x y G . 

Definition 2.4. Let G  be a group, and :f G G  is a function from G  to itself. Then the f-

distributor of x  and y  is defined as 
1 1[ , ] ( ) ( ) ( )fx y f y f x f xy  , for all ,x y G . 

Definition 2.5. Let G  be a group, :f G G  and from G  to itself. We say that the f-distributor 

commuting if [ , ] [ , ]f fx y y x , for all ,x y G .  
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Definition 2.6. Let G  be a group, and :f G G  is a function from G  to itself, (1) 1f  . Then 

the f-center of a group is defined as 

( ) { | [ , ] [ , ] 1,  for all }f f fZ G g G g x x g x G     . 

In particular, if : ( )pf G G x x  . Then the f-center of G  is the p-center of G , 

( ) { | [ , ] [ , ] 1,  for all }p p pZ G g G g x x g x G     . 

If 1: ( )f G G x x . Then the f-center of G  is the center of G , 

1 1( ) { | [ , ] [ , ] 1,  for all }Z G g G g x x g x G      { | ,  for all }g G gx xg x G    . 

Example 2.7. Let
2 2 23 3 3, , | 1,[ , ]G a b c a b c a b   

3,[ , ] ,[ , ] 1c b c c a c    , and :f G G
3( )x x  is a function. Then [ , ] 1fb a  , but [ , ] 1fa b  . 

Proof. Since [ , ]a b c , 
3[ , ]b c c , [ , ] 1a c  , ab bac , 2b cbc , ac ca .So 

1 1 3 3 3 3 3 2 2[ , ] 1 ( ) ( ) ( ) 1 ( ) 1 1 ( )fb a f a f b f ba a b ba a b bababa abab b a ba bac              
2 2 2 2 2 2 2 2 2 2 1 2 2( ) ( ) ( )bacbac b a cb bc babc ac b a ab bac bbacc ac b a b ac ac b a ac ca               

2 2 2 2b a b a  . Certainly 2 2 2 2b a b a , thus [ , ] 1fb a  .  

Moreover [ , ] 1fa b  , in fact, if [ , ] 1fa b  , then  

1 1 3 3 3 3 3 2 2 1[ , ] 1 ( ) ( ) ( ) 1 ( ) 1 ( )fa b f b f a f ab b a ab ababab a b baba a b ba abc               

1 1 2 2 1 1 2 2 1 2 2 2( ) ( ) ( )abc abc a b bc cbc abc acbc a b ac ca abc cabc a b babc ab ab bac                

3[ , ] 1 1babc bacb bc cb b c c        , which is a contradiction to the fact that 
23 1c  . 

Hence [ , ] 1fa b  . 
Lemma 2.8[3].  Every subgroup H  of ( )Z G  is normal in G . 

3 Proof of Mine Theorems 

Theorem 3.1.  Let G  be a group. Then ( )fZ G G .
 

Proof.  First, prove that 
1 1( ) ( )f g f g  , for all ( )fg Z G . Let ( )fg Z G . Then 

1 1 1 1 1[ , ] ( ) ( ) ( ) 1fg g f g f g f g g      .                                                                                      (1) 

Thus
1 1( ) ( ) ( ) (1) 1f g f g f g g f    . By definition 2.6, this is true for all ( )fg Z G ,

1( ) ( ) 1f g f g  ,so
1 1( ) ( )f g f g  . Immediately from the definition1.6 we have (1) 1f  . Then, 

1 1 1 ( ) ( )[1, ] ( ) (1) (1 ) ( (1) ) (1) 1f x f x

fx f x f f x f      ,                                                                                                                                                                                         

1 1 1 1[ ,1] (1) ( ) ( 1) (1) (1) 1fx f f x f x f       .                                                                           (2) 

Therefore [1, ] [ ,1] 1f fx x  , for all x G . So that ( )fZ G   . 

Let ( )fg Z G . For each x G , on the one hand 
1( ) ( )f gg x f x  . On the other hand 

1( ) ( ) ( )f gg x f g f x  . Then 
1( ) ( ) ( )f g f g x f x  . Left product 

1( )f g 
 on both side we have

1 1( ) ( ) ( )f g x f g f x  . By what we have proved above, 
1 1( ) ( )f g f g  . Now 

1 1 1( ) ( ) ( ) ( ) ( )f g x f g f x f g f x    .                                                                                          (3) 

Immediate, from the definition of f-distributor, 
1 1 1 1 1[ , ] ( ) ( ) ( ) 1fg x f x f g f g x      . Similarly 

1[ , ] 1fx g  . Therefore 
1 ( )fg Z G  . 

Let 1 2, ( )fg g Z G . For each x G , from the definition of ( )fZ G , Thus 

1 1

1 2 1 2 1 2[ , ] ( ) ( ) ( )fg g x f x f g g f g g x 
 

1 1

1 2 1 2( ) ( ( ) ( )) ( ) ( ) ( )f x f g f g f g f g f x 
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1 1 1

2 1 1 2( ) ( ) ( ) ( ) ( ) ( )f x f g f g f g f g f x    

1 .                                                                                                                                 (4) 

Similarly 1 2[ , ] 1fx g g  . Therefore 1 2 ( )fg g Z G . Hence ( )fZ G G . 

Corollary 3.2. Let G  be a group. For a prime number p, : ( )pf G G x x  is a function from 

G  to itself, then ( )pZ G G . 

Proof. First, ( ) pf x x . By definition 2.6, the f-center of G  is the p-center of G , 

( ) ( )f pZ G Z G . By theorem 3.1, ( )fZ G G . Hence ( )pZ G G . 

Corollary 3.3. Let G  be a group, and 1: ( )f G G x x is a function from G  to itself. Then 

( )Z G G . 

Proof. First, 1( )f x x . By definition 2.6, the f-center of G  is the center of G , ( ) ( )fZ G Z G . 

By theorem 3.1, ( )fZ G G . Hence ( )Z G G . 

There are other properties about f-center which need to be discussed following. 

Theorem 3.4.  Let G  be a group, and :f G G  is a function from G  to itself. If f f  , for 

all ( )Aut G . Then ( )fZ G  char G. 

Proof . By theorem 3.1,
 

( )fZ G G . Then ( )fZ G  char  G  if and only if ( ) ( )fg Z G   for all 

( )fg Z G  and ( )Aut G ; that is, if and only if [ ( ), ] [ , ( )] 1f fg x x g    for all x G . 

Because ( )Aut G , then there is y G  such that ( )x y , and so   

[ ( ), ] [ ( ), ( )]f fg x g y    

1 1 1 1( ( ( ))) ( ( ( ))) ( ( ( ) ( ))) (( )( )) (( )( )) (( )( ))f y f g f g y f y f g f gy            
1 1 1 1(( )( )) (( )( )) (( )( )) ( ( ( ))) ( ( ( ))) ( ( ( )))f y f g f gy f y f g f gy           

1 1 1 1( ( ) ) ( ( ) ) ( ( )) ( ( ) ( ) ( ))f y f g f gy f y f g f gy         

([ , ] )fg y .  

Since ( )fg Z G , ( )Aut G , [ ( ), ] ([ , ] ) (1) 1f fg x g y     . Similarly [ , ( )] 1fx g  .  

Therefore ( ) ( )fg Z G  . Hence ( )fZ G  char G . 

As immediate consequences of Theorem 3.4 we have the following result: 

Corollary 3.5.  Let G  be a group. For a prime number p, : ( )pf G G x x  is a function from 

G  to itself, then ( )pZ G
 
char G  . 

Proof.  First, ( ) pf x x . For all x G  and ( )Aut G , 

( ) ( ( )) ( ) ( ) ( ( )) ( )p pf x f x x x f x f x          . 

So that f f  . By definition 2.6, the f-center of G is the p-center of G, ( ) ( )f pZ G Z G . 

Moreover, by theorem 3.4, ( )fZ G  char G . Hence ( )pZ G  char G . 

Corollary 3.6. Let G  be a group, and 
1: ( )f G G x x be a function from G  to itself. Then 

( )Z G  char G . 

Proof.  First, 
1( )f x x . For all x G , ( )Aut G , 

1 1( ) ( ( )) ( ) ( ) ( ( )) ( )f x f x x x f x f x           . 

So that f f  . By definition 2.6, the f-center of G is the center of G, ( ) ( )fZ G Z G . 

Moreover, by theorem 3.4, ( )fZ G  char G . Hence ( )Z G  char G  . 

More generally, we have the following result. 

Theorem 3.7.  Let G  be a group, ( )fZ G  char G , N G , ( )fN Z G , and G x N  . If 

( ) ( )i if x f x , where i  is a positive integer . Then f is a group homomorphism.  
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Proof.  First, G x N  . Then f is a group homomorphism if and only if 

1 2 1 2( ) ( ) ( )f g g f g f g  for all 1 2,g g G . By hypothesis G x N  . Let 1

1 1

ig x z , 2

2 2

ig x z , 

and 1 2,z z N . Since ( )fN Z G , ( )fZ G  char G . This is true for all 
1

1 2 1, ,( ) ( )
i

x

fz z z Z G


 . Thus 

1 1
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) (( ) ) ( ) (( ) ) ( ) ( )
i ii i i i i i i ix xf g g f x z x z f x z x f z f z x x f z f z f x x f z      

1 1 1
1 2 1 2 1 2

1 2 1 2 1 2(( ) ) ( ) ( ) (( ) ) ( ) ( ) (( ) ) ( ) ( ) ( )
i i ii i i i i ix x xf z f x f z f z f x f z f z f x f x f z       
1 1

1 2 1 2 1 1 1 2

1 2 1 2 1 2(( ) ) ( ) ( ) ( ) (( ) ) ( ) ( ) ( )
i ii i i i i i i ix xf z f x f x f z f z x f x z f x z x x f x z     

1 2

1 2 1 2( ) ( ) ( ) ( )i if x z f x z f g f g  .  
By choice of 1g and 2g , then f is a group homomorphism. 

Moreover, we have the following result. 

Corollary 3.8.  Let G  be a group. For a prime number p, : ( )pf G G x x   is a function from 

G  to itself, if N G , ( )fN Z G  and /G N  is cyclic then G  is p-abelian group. 

Proof.  Firstly, ( ) pf x x . By corollary 3.5, ( ) ( )f pZ G Z G  char G . Since /G N  is cyclic 

group. Then G x N  . Moreover,  

( ) ( ) ( ) ( )i i p p i if x x x f x   , for each i Z . 

Therefore ( ) ( )i if x f x . By theorem 3.7, f is a group homomorphism. Thus ( ) ( ) ( )f xy f x f y . 

For all x,y G , ( ) ( ) pf xy xy , ( ) ( ) ( ) ( )p pf x f y x y , and so ( ) p p pxy x y . By choice of x and y, 

hence G  is p-abelian group. Finally, we get the following important corollary. 

Corollary 3.9. Let G  be a group. and 
1: ( )f G G x x  is a function from G  to itself, if 

( )fN Z G , and /G N  is cyclic then G  is abelian group. 

Proof.  First, 
1( )f x x . By corollary 3.6, ( ) ( )fZ G Z G  char G . Since /G N  is cyclic then 

G x N  . By hypothesis ( )fN Z G  and lemma 2.8, so that N G . Moreover, 

1 1( ) ( ) ( ) ( )i i i if x x x f x    , for each i Z . 

Therefore ( ) ( )i if x f x . By theorem 3.7, f is a group homomorphism. Thus ( ) ( ) ( )f xy f x f y . 

For all x,y G ,
1( ) ( )f xy xy  , 

1 1 1( ) ( ) ( ) ( ) ( )f x f y x y yx    , and so 
1 1( ) ( )xy yx  , it follow 

that xy yx . By choice of x and y, hence G  is abelian group. 
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