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Abstract. In this paper, based on the study of f-distributor in [1], we defined the concept of f-center
and discussed some properties of f-center. As an application of these properties, we generalize some
properties of p-center and center of groups.

1 Introduction

I. Hawthorn and Y. Guo put forward the concept of f-distributor in [2], and some basic properties
about f-distributor are discussed. Let G be a group, the center of G is defined to be

Z(G)={gG|[g,x]=1, forall xeG}.
The p-center of G is defined to be
Z,(G)={g9eG|[g,x], =[x,9], =1, forall xe G}.
Let f :G — G isafunction, and f (1) =1. Then the f-center of G is defined as

Z,(G)={geG|[9,x]; =[x,9]; =1, forall xeG}.

In this paper, we give the relationship between f-center of a group, p-center of a group and
center of a group. First, the f-center of G is a subgroup of G . In addition, we have promoted some
famous results. For example, let G be a group, if G/Z(G) is cyclic then G is abelian group. On

the other hand, note that [g,x] =1, which implies that[x,g]=1. If [g,x],; =1, but [x,g]; is not
always equal 1.

2 Notation and Preliminaries

In this section, we first fix some nation and then record some lemmas that will be used in the

sequel. Throughout this paper, p always denotes a prime number, Z the ring of integers. Z* is the
additive group of Z. Aut(G) denotes the set of all automorphisms of G forms a group with

respect to composition of maps. H char G denotes that H is characteristic in G . Moreover, other
notations are mostly standard, please refer to [1] and [3].
In this paper, we present some results which will be used in the proof of the main theorems.

Definition 2.1. Let G be a group, if (xy)? =x"y®, forall x,y G .Then G is called a p-abelian

group.
Definition 2.2. Let G be a group. Then the p-commutator of x and y is defined as

[x,y], =xPy " (xy)®, forall x,yeG.
Definition 2.3. Let G be a group. Then the commutator of x and y is defined as

[x,y]=x"y*xy, forall x,yeG.
Definition 2.4. Let G be a group, and f:G — G is a function from G to itself. Then the f-

distributor of x and y is defined as [x,y], = f(y)" f ()" f(xy), forall x,yeG.
Definition 2.5. Let G beagroup, f :G— G and from G to itself. We say that the f-distributor
commuting if [x,y]; =[y,x];, forall x,yeG.
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Definition 2.6. Let G be a group, and f :G — G is a function from G to itself, f(1)=1. Then

the f-center of a group is defined as
Z,(G)={9eG|[g,x]; =[x,9]; =1, forall xeG}.

In particular, if f:G — G(x — x"). Then the f-center of G is the p-center of G,
Z,(G)={g9eG|[g,x], =[x, 9], =1, forall x e G}.
If f:G—G(x+ x™). Then the f-center of G is the center of G,
Z(G)={geG|[g,x] ,=[x,09] , =1, forall xe G} ={g € G| gx = xg, for all xeG}.

Example 2.7. LetG =<a,b,c|a® =b* =c® =1,[a,b] =¢c,[b,c]=c’ [a,c]=1>, and f:G —>G
(x = x*) is a function. Then [b,a], =1, but [a,b], =1.

Proof. Since [a,b]=c, [b,c]=¢c*, [a,c]=1, ab=bac, b=cbc?, ac =ca.So
[b,a], =1< f(a)™" f(b)™ f(ba) =1<>a*h>(ba)’ =1 <> a b *hababa =1 <> abab = b*a’(ba = bac)
<> bacbac = b%a*(cb = bc™?) < babcac = b’a’(ab = bac) < bbacc?ac = b%*a* < b%ac'ac = b’a’(ac = ca)
<> b%*a® =b’a®. Certainly b’a* =b’a®, thus [b,a], =1.

Moreover [a,b], #1, in fact, if [a,b], =1, then
[a,b], =1< f(b)™ f(a)™ f (ab) =1 <>b a(ab)’ =1 <> ababab = a’*h’ <> baba = a’’(ba =abc™)
<> abcabc™ = a’b?(bc = chc) < abc*acbe = a’h?(ac = ca) < abc 'cabe = a’h? < babc = ab?(ab = bac)
< babc =bach <> bc =cb < [b,c]=1<¢* =1, which is a contradiction to the fact that ¢ =1.
Hence [a,b], =1.

Lemma 2.8[3]. Every subgroup H of Z(G) isnormalin G.

3 Proof of Mine Theorems
Theorem 3.1. Let G be agroup. Then Z,(G)<G.

Proof. First, prove that f(g™") = f(g)™,forall geZ (G).Let geZ,(G). Then

[97,0] =f(9)"f(g7) " f(g79)=1. (1)
Thus f(g™)f(g)=f(g'g)=f(@)=1. By definition 2.6, this is true for all geZ,(G) ,
f(g)f(g)=1,50 f(g™) = f(g)™". Immediately from the definition1.6 we have f (1) =1. Then,

[Lx] =) Q@) =(fQ™'™ =@ =1,

X, = f O F) ) = fO =) " =1. @)
Therefore [1,x]; =[x,1]; =1, forall xeG. Sothat Z,(G)= I .

Let geZ.(G) . For each xeG, on the one hand f(gg™'x)= f(x). On the other hand
f(gg™x) = f(g)f(x). Then f(g)f(g™'x)= f(x). Left product f(g)™" on both side we have
f(g'x) = f(g)™ f(x). By what we have proved above, f(g™")= f(g)™". Now

f(g™)=f(g) " f(x)=f(g)f(x). 3
Immediate, from the definition of f-distributor, [g™,x], = f(x) " f(g™) " f(g™'x)=1. Similarly
[x,97']; =1. Therefore g € Z, (G).

Let 9,,0,<€Z,(G). Foreach xeG, from the definition of Z,(G), Thus

[9.9,,X], = F ()™ F(9,9,)™ F(9,9,%)

= f0)7(f(9,) ()" F(9) F(g,) F (%)
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= F() 7" 1(9,) " F(9) " f(g,) f(g,) F(x)
=1. 4)
Similarly [x,0,9,]; =1. Therefore 9,9, €Z,(G).Hence Z,(G)<G.

Corollary 3.2. Let G be a group. For a prime number p, f :G — G(x — x")is a function from
G toitself, thenZ (G)<G.

Proof. First, f(x)=x". By definition 2.6, the f-center of G is the p-center of G ,
Z,(G)=Z2,(G).Bytheorem3.1, Z,(G) <G .Hence Z,(G)<G.

Corollary 3.3. Let G be a group, and f : G — G(x > x ') is a function from G to itself. Then
Z(G)<G.

Proof. First, f(x)=x". By definition 2.6, the f-center of G is the center of G, Z,(G) =Z(G).
By theorem 3.1, Z,(G) <G . Hence Z(G)<G.

There are other properties about f-center which need to be discussed following.
Theorem 3.4. Let G beagroup,and f :G — G is a function from G to itself. If af = f«, for

all & € Aut(G). Then Z,(G) char G.
Proof . By theorem 3.1, Z,(G)<G. Then Z,(G) char G if and only if a(g) € Z,(G) for all
geZ,(G) and a € Aut(G); that is, if and only if [a(Q9),X]; =[x, a(9)]; =1 forall xeG.
Because a € Aut(G), thenthere is y € G such that x = a(y), and so
[a(9). x]; =[a(9). a(¥)]
= (F(a(V)) " (f(a(9)) " (F(a(g)a(y))) = ((fe)(¥)) ((f)(9)) " ((fa)(ay)
= (e F)(Y) (@ f)(9) (e f)(gy)) = (a(F (y)) " (a(f(9))) (e (f (ay)))
=a(f(y) De(f(9) Da(f(gy)) =a(f(y) " F(9)" f(gy))
=a([9,y];) -
Since g€ Z,(G), a e Aut(G), [a(9).x]; =a([9,Y];) =a(l) =1. Similarly [x,(9)]; =1.
Therefore a(9) € Z,(G). Hence Z,(G) char G.
As immediate consequences of Theorem 3.4 we have the following result:
Corollary 3.5. Let G be a group. For a prime number p, f :G — G(x — x")is a function from
G toitself, thenZ (G) char G .
Proof. First, f(x)=x".Forall xeG and « < Aut(G),
fa(x) = f(a(x))=a(X)’ =a(x®)=a(f (X)) =af(X).
So that af = far. By definition 2.6, the f-center of G is the p-center of G, Z,(G)=2,(G) .
Moreover, by theorem 3.4, Z,(G) char G . Hence Z ,(G) char G.

Corollary 3.6. Let G be a group, and f :G — G(x > x ) be a function from G to itself. Then
Z(G) char G.

Proof. First, f(x)=x".Forall xeG, a< Aut(G),
fa(xX)=f(a(X)=a(X) =a(x") =a(f(x))=af(X).
So that «f = fa. By definition 2.6, the f-center of G is the center of G, Z,(G)=2(G) .
Moreover, by theorem 3.4, Z,(G) char G . Hence Z(G) char G .

More generally, we have the following result.
Theorem 3.7. Let G be a group, Z,(G) char G,N<G,N<Z,(G), and G=<x>N. If

f(x')= f(x)', where i is a positive integer . Then f is a group homomorphism.
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Proof. Firstt, G=<x>N . Then f is a group homomorphism if and only if
f(9,9,) = f(g,)f(g,) for all g,,g, G . By hypothesis G=<x>N. Let g, =x"z, g, =x"%z,,

and z,,z,e N.SinceN <Z,(G),Z,(G) char G. This is true for all zl,zz,(zl)xfil €Z,(G). Thus
f(9,0,) = f (xiz,x72,) = f (X"z,x?) f (z,) = F ((2,)™ X*x2) F (2,) = F((z,) ™) f (x'x")  (2,)
= f((z) ™) F(X™) F(z) = F((2) ™) FOOR™ () = F((2) ™) F 00" ()" F(z,)
= F((z) ™) () F () F(2,) = £((2) 7 %0) F(Xe2,) = £ (xizx X £ (x22,)
= f (Xllzl) f (Xlzzz) = f(9,)f(9,) .
By choice of g,and g,, then f is a group homomorphism.
Moreover, we have the following result.
Corollary 3.8. Let G be a group. For a prime number p, f :G — G(x — x") is a function from
G toitself, if NG, N<Z,(G) and G/N is cyclic then G is p-abelian group.
Proof. Firstly, f(x)=x". By corollary 3.5, Z,(G)=Z2,(G) char G. Since G/N is cyclic
group. Then G =< x> N . Moreover,
f(x)=(x") =(x") = f(x)', foreachieZ.
Therefore f(x')= f(x)'. By theorem 3.7, f is a group homomorphism. Thus f(xy)= f(x)f(y).
Forall x,ye G, f(xy)=(xy)”, f(x)f(y)=(x)?(y)", and so (xy)” =x"yP. By choice of x and y,
hence G is p-abelian group. Finally, we get the following important corollary.
Corollary 3.9. Let G be a group. and f:G — G(x+> x™) is a function from G to itself, if
N <Z,.(G),and G/N iscyclic then G is abelian group.
Proof. First, f(x)=x". By corollary 3.6, Z,(G)=Z(G) char G. Since G/ N is cyclic then
G =< x> N. By hypothesis N <Z,(G) and lemma 2.8, so that N <G . Moreover,
f(x)=(x")"=(x") =f(x)', foreachieZ.
Therefore f(x')= f(x)". By theorem 3.7, f is a group homomorphism. Thus f(xy)= f(x)f(y).
For all x,ye G, f(xy)=(xy)™", f(X)f(y)=0)"(y)"=(yx)*", and so (xy)™ =(yx)™, it follow
that xy = yx. By choice of x and y, hence G is abelian group.
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