Some Properties of f-distributor

Zhang Peixin ${ }^{1, \mathrm{a}}{ }^{*}$ Hai Jinke ${ }^{2, b}$ and Lv Ruizhen ${ }^{3, \mathrm{C}}$

${ }^{1,2,3}$ College of Mathematics, Qingdao University, Shandong 266071, P.R.China
amrzhangpeixin@163.com, bhaijinke@qdu.edu.cn, ${ }^{\text {c } 1360679962 @ q q . c o m ~}$
Keywords: f-distributor; f-center of a group; p-center of a group; center of a group

Abstract

In this paper, based on the study of f-distributor in [1], we defined the concept of f-center and discussed some properties of f-center. As an application of these properties, we generalize some properties of p-center and center of groups.

1 Introduction

I. Hawthorn and Y. Guo put forward the concept of f-distributor in [2], and some basic properties about f-distributor are discussed. Let G be a group, the center of G is defined to be

$$
Z(G)=\{g \in G \mid[g, x]=1, \text { for all } x \in G\} .
$$

The p-center of G is defined to be

$$
Z_{p}(G)=\left\{g \in G \mid[g, x]_{p}=[x, g]_{p}=1, \text { for all } x \in G\right\} .
$$

Let $f: G \rightarrow G$ is a function, and $f(1)=1$. Then the f-center of G is defined as

$$
Z_{f}(G)=\left\{g \in G \mid[g, x]_{f}=[x, g]_{f}=1, \text { for all } x \in G\right\}
$$

In this paper, we give the relationship between f-center of a group, p-center of a group and center of a group. First, the f-center of G is a subgroup of G. In addition, we have promoted some famous results. For example, let G be a group, if $G / Z(G)$ is cyclic then G is abelian group. On the other hand, note that $[g, x]=1$, which implies that $[x, g]=1$. If $[g, x]_{f}=1$, but $[x, g]_{f}$ is not always equal 1 .

2 Notation and Preliminaries

In this section, we first fix some nation and then record some lemmas that will be used in the sequel. Throughout this paper, p always denotes a prime number, Z the ring of integers. Z^{+}is the additive group of $Z \operatorname{Aut}(G)$ denotes the set of all automorphisms of G forms a group with respect to composition of maps. H char G denotes that H is characteristic in G. Moreover, other notations are mostly standard, please refer to [1] and [3].

In this paper, we present some results which will be used in the proof of the main theorems.
Definition 2.1. Let G be a group, if $(x y)^{p}=x^{p} y^{p}$, for all $x, y \in G$.Then G is called a p-abelian group.

Definition 2.2. Let G be a group. Then the p-commutator of x and y is defined as $[x, y]_{p}=x^{-p} y^{-p}(x y)^{p}$, for all $x, y \in G$.

Definition 2.3. Let G be a group. Then the commutator of x and y is defined as $[x, y]=x^{-1} y^{-1} x y$, for all $x, y \in G$.

Definition 2.4. Let G be a group, and $f: G \rightarrow G$ is a function from G to itself. Then the f distributor of x and y is defined as $[x, y]_{f}=f(y)^{-1} f(x)^{-1} f(x y)$, for all $x, y \in G$.

Definition 2.5. Let G be a group, $f: G \rightarrow G$ and from G to itself. We say that the f-distributor commuting if $[x, y]_{f}=[y, x]_{f}$, for all $x, y \in G$.

Definition 2.6. Let G be a group, and $f: G \rightarrow G$ is a function from G to itself, $f(1)=1$. Then the f-center of a group is defined as

$$
Z_{f}(G)=\left\{g \in G \mid[g, x]_{f}=[x, g]_{f}=1, \text { for all } x \in G\right\} .
$$

In particular, if $f: G \rightarrow G\left(x \rightarrow x^{p}\right)$. Then the f-center of G is the p-center of G,

$$
Z_{p}(G)=\left\{g \in G \mid[g, x]_{p}=[x, g]_{p}=1, \text { for all } x \in G\right\} .
$$

If $f: G \rightarrow G\left(x \mapsto x^{-1}\right)$. Then the f-center of G is the center of G,

$$
Z(G)=\left\{g \in G \mid[g, x]_{-1}=[x, g]_{-1}=1, \text { for all } x \in G\right\}=\{g \in G \mid g x=x g, \text { for all } x \in G\} .
$$

Example 2.7. Let $G=<a, b, c \mid a^{3^{2}}=b^{3^{2}}=c^{3^{2}}=1,[a, b]=c,[b, c]=c^{3},[a, c]=1>$, and $f: G \rightarrow G$ $\left(x \rightarrow x^{3}\right)$ is a function. Then $[b, a]_{f}=1$, but $[a, b]_{f} \neq 1$.

Proof. Since $[a, b]=c,[b, c]=c^{3},[a, c]=1, a b=b a c, b=c b c^{2}, a c=c a$.So
$[b, a]_{f}=1 \Leftrightarrow f(a)^{-1} f(b)^{-1} f(b a)=1 \Leftrightarrow a^{-3} b^{-3}(b a)^{3}=1 \Leftrightarrow a^{-3} b^{-3} b a b a b a=1 \Leftrightarrow a b a b=b^{2} a^{2}(b a=b a c)$ $\Leftrightarrow b a c b a c=b^{2} a^{2}\left(c b=b c^{-2}\right) \Leftrightarrow b a b c^{-2} a c=b^{2} a^{2}(a b=b a c) \Leftrightarrow b b a c c^{-2} a c=b^{2} a^{2} \Leftrightarrow b^{2} a c^{-1} a c=b^{2} a^{2}(a c=c a)$ $\Leftrightarrow b^{2} a^{2}=b^{2} a^{2}$. Certainly $b^{2} a^{2}=b^{2} a^{2}$, thus $[b, a]_{f}=1$.

Moreover $[a, b]_{f} \neq 1$, in fact, if $[a, b]_{f}=1$, then
$[a, b]_{f}=1 \Leftrightarrow f(b)^{-1} f(a)^{-1} f(a b)=1 \Leftrightarrow b^{-3} a^{-3}(a b)^{3}=1 \Leftrightarrow a b a b a b=a^{3} b^{3} \Leftrightarrow b a b a=a^{2} b^{2}\left(b a=a b c^{-1}\right)$ $\Leftrightarrow a b c^{-1} a b c^{-1}=a^{2} b^{2}\left(b c^{-1}=c b c\right) \Leftrightarrow a b c^{-1} a c b c=a^{2} b^{2}(a c=c a) \Leftrightarrow a b c^{-1} c a b c=a^{2} b^{2} \Leftrightarrow b a b c=a b^{2}(a b=b a c)$ $\Leftrightarrow b a b c=b a c b \Leftrightarrow b c=c b \Leftrightarrow[b, c]=1 \Leftrightarrow c^{3}=1$, which is a contradiction to the fact that $c^{3^{2}}=1$. Hence $[a, b]_{f}=1$.

Lemma 2.8[3]. Every subgroup H of $Z(G)$ is normal in G.

3 Proof of Mine Theorems

Theorem 3.1. Let G be a group. Then $Z_{f}(G) \leq G$.
Proof. First, prove that $f\left(g^{-1}\right)=f(g)^{-1}$, for all $g \in Z_{f}(G)$. Let $g \in Z_{f}(G)$. Then

$$
\begin{equation*}
\left[g^{-1}, g\right]_{f}=f(g)^{-1} f\left(g^{-1}\right)^{-1} f\left(g^{-1} g\right)=1 \tag{1}
\end{equation*}
$$

Thus $f\left(g^{-1}\right) f(g)=f\left(g^{-1} g\right)=f(1)=1$. By definition 2.6, this is true for all $g \in Z_{f}(G)$, $f\left(g^{-1}\right) f(g)=1$, so $f\left(g^{-1}\right)=f(g)^{-1}$. Immediately from the definition1.6 we have $f(1)=1$. Then,
$[1, x]_{f}=f(x)^{-1} f(1)^{-1} f(1 x)=\left(f(1)^{-1}\right)^{f(x)}=(1)^{f(x)}=1$,
$[x, 1]_{f}=f(1)^{-1} f(x)^{-1} f(x 1)=f(1)^{-1}=(1)^{-1}=1$.
Therefore $[1, x]_{f}=[x, 1]_{f}=1$, for all $x \in G$. So that $Z_{f}(G) \neq \varnothing$.
Let $g \in Z_{f}(G)$. For each $x \in G$, on the one hand $f\left(g g^{-1} x\right)=f(x)$. On the other hand $f\left(g g^{-1} x\right)=f(g) f(x)$. Then $f(g) f\left(g^{-1} x\right)=f(x)$. Left product $f(g)^{-1}$ on both side we have $f\left(g^{-1} x\right)=f(g)^{-1} f(x)$. By what we have proved above, $f\left(g^{-1}\right)=f(g)^{-1}$. Now

$$
\begin{equation*}
f\left(g^{-1} x\right)=f(g)^{-1} f(x)=f\left(g^{-1}\right) f(x) . \tag{3}
\end{equation*}
$$

Immediate, from the definition of f-distributor, $\left[g^{-1}, x\right]_{f}=f(x)^{-1} f\left(g^{-1}\right)^{-1} f\left(g^{-1} x\right)=1$. Similarly $\left[x, g^{-1}\right]_{f}=1$. Therefore $g^{-1} \in Z_{f}(G)$.

Let $g_{1}, g_{2} \in Z_{f}(G)$. For each $x \in G$, from the definition of $Z_{f}(G)$, Thus
$\begin{aligned} {\left[g_{1} g_{2}, x\right]_{f} } & =f(x)^{-1} f\left(g_{1} g_{2}\right)^{-1} f\left(g_{1} g_{2} x\right) \\ & =f(x)^{-1}\left(f\left(g_{1}\right) f\left(g_{2}\right)\right)^{-1} f\left(g_{1}\right) f\left(g_{2}\right) f(x)\end{aligned}$

$$
\begin{align*}
& =f(x)^{-1} f\left(g_{2}\right)^{-1} f\left(g_{1}\right)^{-1} f\left(g_{1}\right) f\left(g_{2}\right) f(x) \\
& =1 \tag{4}
\end{align*}
$$

Similarly $\left[x, g_{1} g_{2}\right]_{f}=1$. Therefore $g_{1} g_{2} \in Z_{f}(G)$. Hence $Z_{f}(G) \leq G$.
Corollary 3.2. Let G be a group. For a prime number $p, f: G \rightarrow G\left(x \rightarrow x^{p}\right)$ is a function from G to itself, then $Z_{p}(G) \leq G$.

Proof. First, $f(x)=x^{p}$. By definition 2.6, the f-center of G is the p-center of G, $Z_{f}(G)=Z_{p}(G)$. By theorem 3.1, $Z_{f}(G) \leq G$. Hence $Z_{p}(G) \leq G$.

Corollary 3.3. Let G be a group, and $f: G \rightarrow G\left(x \mapsto x^{-1}\right)$ is a function from G to itself. Then $Z(G) \leq G$.

Proof. First, $f(x)=x^{-1}$. By definition 2.6, the f-center of G is the center of $G, Z_{f}(G)=Z(G)$. By theorem 3.1, $Z_{f}(G) \leq G$. Hence $Z(G) \leq G$.

There are other properties about f-center which need to be discussed following.
Theorem 3.4. Let G be a group, and $f: G \rightarrow G$ is a function from G to itself. If $\alpha f=f \alpha$, for all $\alpha \in \operatorname{Aut}(G)$. Then $Z_{f}(G)$ char G.

Proof. By theorem 3.1, $Z_{f}(G) \leq G$. Then $Z_{f}(G)$ char G if and only if $\alpha(g) \in Z_{f}(G)$ for all $g \in Z_{f}(G)$ and $\alpha \in \operatorname{Aut}(G)$; that is, if and only if $[\alpha(g), x]_{f}=[x, \alpha(g)]_{f}=1$ for all $x \in G$.

Because $\alpha \in \operatorname{Aut}(G)$, then there is $y \in G$ such that $x=\alpha(y)$, and so

$$
\begin{aligned}
{[\alpha(g), x]_{f} } & =[\alpha(g), \alpha(y)]_{f} \\
& =(f(\alpha(y)))^{-1}(f(\alpha(g)))^{-1}(f(\alpha(g) \alpha(y)))=((f \alpha)(y))^{-1}((f \alpha)(g))^{-1}((f \alpha)(g y)) \\
& =((\alpha f)(y))^{-1}((\alpha f)(g))^{-1}((\alpha f)(g y))=(\alpha(f(y)))^{-1}(\alpha(f(g)))^{-1}(\alpha(f(g y))) \\
& =\alpha\left(f(y)^{-1}\right) \alpha\left(f(g)^{-1}\right) \alpha(f(g y))=\alpha\left(f(y)^{-1} f(g)^{-1} f(g y)\right) \\
& =\alpha\left([g, y]_{f}\right)
\end{aligned}
$$

Since $g \in Z_{f}(G), \alpha \in \operatorname{Aut}(G),[\alpha(g), x]_{f}=\alpha\left([g, y]_{f}\right)=\alpha(1)=1$. Similarly $[x, \alpha(g)]_{f}=1$.
Therefore $\alpha(g) \in Z_{f}(G)$. Hence $Z_{f}(G)$ char G.
As immediate consequences of Theorem 3.4 we have the following result:
Corollary 3.5. Let G be a group. For a prime number $p, f: G \rightarrow G\left(x \rightarrow x^{p}\right)$ is a function from G to itself, then $Z_{p}(G)$ char G.

Proof. First, $f(x)=x^{p}$. For all $x \in G$ and $\alpha \in A u t(G)$,

$$
f \alpha(x)=f(\alpha(x))=\alpha(x)^{p}=\alpha\left(x^{p}\right)=\alpha(f(x))=\alpha f(x)
$$

So that $\alpha f=f \alpha$. By definition 2.6, the f-center of G is the p-center of $G, Z_{f}(G)=Z_{p}(G)$. Moreover, by theorem 3.4, $Z_{f}(G)$ char G. Hence $Z_{p}(G)$ char G.

Corollary 3.6. Let G be a group, and $f: G \rightarrow G\left(x \mapsto x^{-1}\right)$ be a function from G to itself. Then $Z(G)$ char G.

Proof. First, $f(x)=x^{-1}$. For all $x \in G, \alpha \in \operatorname{Aut}(G)$,

$$
f \alpha(x)=f(\alpha(x))=\alpha(x)^{-1}=\alpha\left(x^{-1}\right)=\alpha(f(x))=\alpha f(x)
$$

So that $\alpha f=f \alpha$. By definition 2.6, the f-center of G is the center of $\mathrm{G}, Z_{f}(G)=Z(G)$. Moreover, by theorem 3.4, $Z_{f}(G)$ char G. Hence $Z(G)$ char G.

More generally, we have the following result.
Theorem 3.7. Let G be a group, $Z_{f}(G)$ char $G, N \triangleleft G, N \leq Z_{f}(G)$, and $G=<x>N$. If $f\left(x^{i}\right)=f(x)^{i}$, where i is a positive integer . Then f is a group homomorphism.

Proof. First, $G=<x>N$. Then f is a group homomorphism if and only if $f\left(g_{1} g_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$. By hypothesis $G=<x>N$. Let $g_{1}=x^{i_{1}} z_{1}, g_{2}=x^{i_{2}} z_{2}$, and $z_{1}, z_{2} \in N$. Since $N \leq Z_{f}(G), Z_{f}(G)$ char G. This is true for all $z_{1}, z_{2},\left(z_{1}\right)^{x^{-i-1}} \in Z_{f}(G)$. Thus

$$
\begin{aligned}
f\left(g_{1} g_{2}\right) & =f\left(x^{i_{1}} z_{1} x^{i_{2}} z_{2}\right)=f\left(x^{i_{1}} z_{1} x^{i_{2}}\right) f\left(z_{2}\right)=f\left(\left(z_{1}\right)^{-x^{i_{1}}} x^{i_{1}} x^{i_{2}}\right) f\left(z_{2}\right)=f\left(\left(z_{1}\right)^{-x^{i_{1}}}\right) f\left(x^{i_{1}} x^{i_{2}}\right) f\left(z_{2}\right) \\
& =f\left(\left(z_{1}\right)^{-x^{i}}\right) f\left(x^{i_{1}+i_{2}}\right) f\left(z_{2}\right)=f\left(\left(z_{1}\right)^{-x^{i}}\right) f\left(x x^{i_{1}+i_{2}} f\left(z_{2}\right)=f\left(\left(z_{1}\right)^{-x^{i}}\right) f(x)^{i_{1}} f(x)^{i_{2}} f\left(z_{2}\right)\right. \\
& =f\left(\left(z_{1}\right)^{-x^{i}}\right) f\left(x^{i_{1}}\right) f\left(x^{i_{2}}\right) f\left(z_{2}\right)=f\left(\left(z_{1}\right)^{-x^{i_{1}}} x^{i_{1}}\right) f\left(x^{i_{2}} z_{2}\right)=f\left(x^{i_{1}} z_{1} x^{-i_{1}} x^{i_{1}}\right) f\left(x^{i_{2}} z_{2}\right) \\
& =f\left(x^{i_{1}} z_{1}\right) f\left(x^{i_{2}} z_{2}\right)=f\left(g_{1}\right) f\left(g_{2}\right) .
\end{aligned}
$$

By choice of g_{1} and g_{2}, then f is a group homomorphism.
Moreover, we have the following result.
Corollary 3.8. Let G be a group. For a prime number $p, f: G \rightarrow G\left(x \rightarrow x^{p}\right)$ is a function from G to itself, if $N \triangleleft G, N \leq Z_{f}(G)$ and G / N is cyclic then G is p-abelian group.

Proof. Firstly, $f(x)=x^{p}$. By corollary $3.5, Z_{f}(G)=Z_{p}(G)$ char G. Since G / N is cyclic group. Then $G=<x>N$. Moreover,

$$
f\left(x^{i}\right)=\left(x^{i}\right)^{p}=\left(x^{p}\right)^{i}=f(x)^{i}, \text { for each } i \in Z .
$$

Therefore $f\left(x^{i}\right)=f(x)^{i}$. By theorem 3.7, f is a group homomorphism. Thus $f(x y)=f(x) f(y)$. For all $\mathrm{x}, \mathrm{y} \in G, f(x y)=(x y)^{p}, f(x) f(y)=(x)^{p}(y)^{p}$, and so $(x y)^{p}=x^{p} y^{p}$. By choice of x and y , hence G is p-abelian group. Finally, we get the following important corollary.

Corollary 3.9. Let G be a group. and $f: G \rightarrow G\left(x \mapsto x^{-1}\right)$ is a function from G to itself, if $N \leq Z_{f}(G)$, and G / N is cyclic then G is abelian group.

Proof. First, $f(x)=x^{-1}$. By corollary 3.6, $Z_{f}(G)=Z(G)$ char G. Since G / N is cyclic then $G=\langle x\rangle N$. By hypothesis $N \leq Z_{f}(G)$ and lemma 2.8, so that $N \triangleleft G$. Moreover,

$$
f\left(x^{i}\right)=\left(x^{i}\right)^{-1}=\left(x^{-1}\right)^{i}=f(x)^{i}, \text { for each } i \in Z .
$$

Therefore $f\left(x^{i}\right)=f(x)^{i}$. By theorem 3.7, f is a group homomorphism. Thus $f(x y)=f(x) f(y)$. For all $\mathrm{x}, \mathrm{y} \in G, f(x y)=(x y)^{-1}, f(x) f(y)=(x)^{-1}(y)^{-1}=(y x)^{-1}$, and so $(x y)^{-1}=(y x)^{-1}$, it follow that $x y=y x$. By choice of x and y , hence G is abelian group.

References

[1] Y. Guo. A New Way to Look at Homomorphisms. 2013. New Zealand: University of Waikato, pp: 1-16.
[2] I. Hawthorn, Y. Guo. Arbitrary Function in Group Theory. 2015. New Zealand of Mathematics, vol. 45: 1-9.
[3] J. S. Rose. A Course on Group Theory. 1978. London: Cambridge University Press.
[4] Qiaohong Zhang, Qinhai Zhang. 2007. Some Properties of p-commutators. Journal of Shanxi Normal University (Natural Science Edition), vol. 21(4): 1-3.
[5] Mingyao Xu. 1987. The power structure of finite p-groups. Bull. Austral. Math. Soc, vol. 36: 110.
[6] Qiaohong Zhang. 2009. A Note on P-abelian P-groups. Journal of ChangzhiUniversity, vol. 26(5).

