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Abstract. In this paper, we consider a renewal risk model with interest force, derive the joint
distribution of the minimum surplus and maximum surplus before the ruin, and the integral equation
of the joint distribution is also obtained.

Introduction

In recent years, the classic risk model has received a remarkable amount of attention and there have
been many generalizations. Sundt and Teugels (1995,1997) considered a compound Poisson model
with a constant interest force, and the upper and lower bounds for the ruin probability and the
integral equation of the ruin probability were obtained by using renewal techniques. Yang and
Zhang (2001a, 2001b, 2001c) used the techniques of Sundt and Teugels (1995), some related
problems were obtained. Yang (1998) considered a discrete time risk model with a constant interest
force, and both Lundberg-type inequality and non-exponential upper bounds for ruin probabilities
were obtained by using martingale inequalities. Renewal risk model with interest force as a
generalization of the classic risk model was considered in Wu and Du (2002) by using discrete
method. Lin and Wang (2005) adopted a different discrete techniques, derived the distribution of
surplus immediately before ruin and that of deficit at ruin, further the integral equations of these
distributions were obtained.

In this paper, we consider renewal risk model with interest force. By using the techniques of Lin
and Wang (2005), the joint distribution of the minimum surplus and maximum surplus before the
ruin is derived, and the integral equation of the joint distribution is also obtained.

Definition of the Model

Let C2F.P)pe 4 complete probability space. We consider the renewal risk model with interest
N (t)

S(t) =X

force. Supposes(t) denote the amount of claim in the time interval (O’t], ie. i<l where

X121 is independent and identically distributed (i.i.d.) random variables with common

distribution function F(X), denotes the amount of the 1th claim. The counting process {N(t).t =0}
denotes the number of claims up to time t
and is defined as
N(t) = max{k Wy + W, +---+ W, < t}, where the inter-claim times ™Vi! 21 are assumed to be
i.i.d. random variables with common distribution function K(W). Further, we assume the sequences
Wi 121} and X121 are independent, and that CE(W,) > E(Xl)’ providing a positive safety
loading factor.

Let Us(® denotes the insurance company’s surplus at time t. From the above assumption, it
follows that

dU, (t) = cdt + U, (t)adt — dS (t) )
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From Sundt and Teugels (1995) and (1), we know that
U, () = ue® +c§; — joteb‘“-”dS(v) @)
where

L t if =0
Sy=fetdv=qet-1 o

u >0 is initial surplus of insurance company, ¢ >0is the premium income of unite time, & is
constant interest force.

Definitionl. If T =inf{t >0:U (t) <0} (T =oo if the set is empty) , T is the ruin time.
Obviously, it’s a stopping time.
Definition2. Let ¥, (u) denote the ultimate ruin probability with initial reserveu, That is
s () =P{UU, () <O0]U,(0) =u}

Main Results

Let T, denote the time of the nth claim happening, i.e. T, = ZWi . By (2) we have
i=1
e” -1

U,(t) =ue* +¢ 5 D Xt
i=1

when t =T, we have

ot
e n _1 n

U,(T,) =ue’™ +c 5 = X e

i=1

Cied N\ e™ -1 sa-m)
= ue —Z[Xi—c—5 le
i=1l

n

o) W, n
= ue i=1 _ ZYieé‘(Tn -Ti)
i=1

azn:wi no 8 anwj
=ue & —>Ye '™
i=1

where

pWi-1

Y. =X, -c¢ L 1>1.

Obviously {(Y;,W,),i > 1} are independent and have the same distribution G(y,w),

W,

G(y,w):P{lexl—ce <y,W, < w}

= jow P{X, - ¢§; < y}dK(t)

= ["Fy+cS)dK ®
For a>0,b >0, letH(u,a,b)
H(u,a,b)= P{0i<rtlfTU5(t) >b,supU;(t)<a, T <oo|U,(0)=u} (3)

0<t<T
be the joint distribution function of the minimum surplus and maximum surplus before the ruin
with the initial reserve u.
Theorem 1. LetH (u,a,b) be defined as (3), then we have

(1) whenu>aoru<hb,then H(u,a,b)=0
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(2) when b<u<a, then H(u,a,b)=>"h (u,ab),

n=1

Where
h,(u,a,b) :jw F (ue® +¢S;)dK (t)
ue® +CSH

huab)=["] . s, e U8 LGSy 2 b)dF (y)dK ()
Proof (1) when u>a or u<b, accordlng to definition (3), obviously H(u,a,b) =0.

(2) when b <u < a, according to definition (3), we have
H(u,a,b) = P{lnf Ust)=bsupU;(t)<a,T <o}

0<t<T

_ZP{me (t)>bsupU,(t)<a,T =T}

0<t<T

=Y Ph<U,T)<absU,T,)<a,

n=1

-, b<U (T, ) <a,U,(T,) <0}
=3 h,(u,a,b) @

where h (u,a,b)=P{b<U,(T)<a b<U,(T,)<a--b<U,T_)<aU,T,)<0}
According to the definition, we have
h, (u,a,b) = P{U ,(T,) < 0}
= P{ue™ —Y, < 0} = j: F(ue* +¢S,)dK(t) ()
h,(u,a,b) = P{b <U,(T,) < a,U,(T,) <0}
=P{b<ue™ -V, <a,ue’ —e’ =My, Y, <0}
= Jj j: P{b <ue™ -Y, <a,ue’™™")

™Y —Y, <0]Y, = y,W, = t}dG(y,t)

o pue’t—b St SW. _
=[] Plue™ —y)e™ v, <0} (y+cS,)dK (1)

ue” +CS” W,
=, Jrs, o PR +CS0 =)™y e (K 1)

_J I”e *CS“ *h , (ue® +cS;; — y,a,b)dF (y)dK (t) (6)

ue +cS -a
By inductive assumption, when n> 2,
h,(u,a,b) =P{b <U,(T)) <a,
Db <U(T,)<a,--,b<U,T, ;) <aU,T,) <0}
=P{b<ue™ -Y, <a,b <ue’™™) My Y <a,-

U= n-1 n
'SZ 1o YW, ZJ
b<ue ™ —EYeJ1 <aue'1 EYe'l <0

=1

o pue’-b .
- J.O -[ueﬁt_a P{b = (Uem - y)eéWZ _YZ < a'
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n-1 52w
_ZYe j=i+l <a
b < (ue” - )e ” B

i 5ZH:WJ- n 5Zn_:wj
(ue™ —y)e 7 =D Ye T <OG(y,t)

i=2

_I J“e “h h,. (Ue™ —y, a,b)dF (y + ¢S )dK (t)

ue’-a

ue? +cSt| _
=, [ es,a MU 68—y 2 b)dF (y)dK (1) (7)
Theorem 2 whenb <u <a, then H (u,a,b) has the following integral equation

H(U a, b) _[ F(Ue +Cst|)dK(t)+.[ Iue '+cSg-a
+¢Sg; — ¥, X)dF (y)dK (t)

uet cS‘I

H ue”

Proof

H (u, ab)_Zh (u,a,b) =h,(u, ab)+Zh (u,a,b)

n=2

=h(u,a,b) + 4 Z-[ Ie +cst| a h,,(ue” + CS_7 -v,a,b)dF (y)dK(t)
=h1(u,a,b)+-[ Jl +csf Zh—l(“e +cS,, - y,a,b)dF (y)dK (t)

ue? +S—|

= [} Fue™ +eS)dk@+ [ [ o HUe™ oS o e aak ey ©

Corollary 1 In Theorem 1, let b — 0", we can get the distribution function of the maximum
surplus before the ruin H(u,a)

(1) whena<u,thenH(u,a)=0

(2) when a>u, thenH(u,a)=>) h,(u,a), whereh,(u,a) =_[:lf(ue‘*+cs_ﬂ)dK(t)
n=1

When N =2

h,(u,a) = _[ Iue SR et s
e +cS -a _1 +cSﬂ—y,a)dF(y)dK(t)
Proof
let

b—0"
in Theorem 1, then we have Corollary 1.

Corollary 2 In Theorem 2, let b — 0", then H(u,a) has the following integral equation
H(u,a) = [ F(ue® +cS)dk ) +[ [, "+

ue® +CS -a

H ue”

+cS;, - y,a)dF (y)dK (t)

Proof
let
b—0"
in Theorem 2, then we have Corollary 2.
Corollary 3 In Theorem 1, let a — 4+, we can get the distribution function of the minimum
surplus before the ruin H(u,b)
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(1> when b>u,then H(u,b)=0
(2) when b<u, thenH(u,b)=3"h, (u.b),

n=1

where

h, (u,b) = j: F(ue® +cS,)dK (t)

When N =2

% pue+cSy-b st
h, (u.b) = [ Is. N1 (U8 ¢S, —y,b)dF (y)dK (1)
Proof let a — +oo in Theorem 1, then we have Corollary 3.
Corollary 4 In Theorem 2, let b — 0", then H(u,a) has the following integral equation

o _ o pue?+cSy-b . _
K (u,b) =IO F (ue™ +cS;)dK (1) +_|'0 [7 " K +cS,— y,b)dF (y)dK (t)

0

Proof let a — +oo in Theorem 2, then we have Corollary 4.
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