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Abstract. In this paper, we consider a renewal risk model with interest force, derive the joint 

distribution of the minimum surplus and maximum surplus before the ruin, and the integral equation 

of the joint distribution is also obtained.  

Introduction  

In recent years, the classic risk model has received a remarkable amount of attention and there have 

been many generalizations. Sundt and Teugels (1995,1997) considered a compound Poisson model 

with a constant interest force, and the upper and lower bounds for the ruin probability and the 

integral equation of the ruin probability were obtained by using renewal techniques. Yang and 

Zhang (2001a, 2001b, 2001c) used the techniques of Sundt and Teugels (1995), some related 

problems were obtained. Yang (1998) considered a discrete time risk model with a constant interest 

force, and both Lundberg-type inequality and non-exponential upper bounds for ruin probabilities 

were obtained by using martingale inequalities. Renewal risk model with interest force as a 

generalization of the classic risk model was considered in Wu and Du (2002) by using discrete 

method. Lin and Wang (2005) adopted a different discrete techniques, derived the distribution of 

surplus immediately before ruin and that of deficit at ruin, further the integral equations of these 

distributions were obtained.  

In this paper, we consider renewal risk model with interest force. By using the techniques of Lin 

and Wang (2005), the joint distribution of the minimum surplus and maximum surplus before the 

ruin is derived, and the integral equation of the joint distribution is also obtained. 

Definition of the Model 

Let ),,( PF be a complete probability space. We consider the renewal risk model with interest 

force. Suppose )(tS  denote the amount of claim in the time interval ],0( t , i.e. 
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, where 

}1,{ iX i  is independent and identically distributed (i.i.d.) random variables with common 

distribution function )(xF , denotes the amount of the i th claim. The counting process }0),({ ttN  

denotes the number of claims up to time t  

and is defined as 
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, where the inter-claim times 
}1,{ iWi  are assumed to be 

i.i.d. random variables with common distribution function )(wK . Further, we assume the sequences 

}1,{ iWi  and 
}1,{ iX i  are independent, and that )()( 11 XEWcE  , providing a positive safety 

loading factor.  

Let 
)(tU  denotes the insurance company’s surplus at time t . From the above assumption, it 

follows that 
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From Sundt and Teugels (1995) and (1), we know that 
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0u  is initial surplus of insurance company, 0c is the premium income of unite time,   is 

constant interest force. 

Definition1. If }0)(:0inf{  tUtT  ( T  if the set is empty) , T  is the ruin time. 

Obviously, it’s a stopping time. 

Definition2. Let )(u denote the ultimate ruin probability with initial reserve u , That is  
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Main Results 

Let nT denote the time of the n th claim happening, i.e. 
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when nTt  ,  we have  
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Obviously }1),,{( iWY ii  are independent and have the same distribution ),( wyG ， 
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For 0,0  ba , let ),,( bauH  

                                    0 0
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be the joint distribution function of the minimum surplus and maximum surplus before the ruin 

with the initial reserve u . 

Theorem 1.  Let ),,( bauH be defined as (3), then we have  

（1） when au   or bu  , then 0),,( bauH  
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Proof (1) when au   or bu  , according to definition (3), obviously 0),,( bauH . 

(2) when aub  , according to definition (3), we have  
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Theorem 2  when aub  , then ),,( bauH  has the following integral equation 
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Corollary 1  In Theorem 1, let  0b , we can get the distribution function of the maximum 

surplus before the ruin ),( auH  
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Proof  
 let  

 0b  
in Theorem 1, then we have Corollary 1. 

Corollary 2  In Theorem 2,  let  0b , then ),( auH  has the following integral equation  
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Proof  
 let 

 0b  
in Theorem 2, then we have Corollary 2. 

Corollary 3  In Theorem 1, let a , we can get the distribution function of the minimum 

surplus before the ruin ),( buH  
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Proof  let a  in Theorem 1, then we have Corollary 3. 

Corollary 4  In Theorem 2,  let  0b , then ),( auH  has the following integral equation  
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Proof  let a  in Theorem 2, then we have Corollary 4. 
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