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Abstract. In this paper, we propose a new ridge type estimator to overcome the multicollinearity 

problem, and we call the new biased estimator as the stochastic restricted ridge estimator (SRRE). 

In the mean squared errors matrix sense SRRE will be compared with several other biased 

estimators. The necessary and sufficient conditions for the superiority of the new estimators SRRE 

over the the ridge estimator (RE) and the Mixed Regression Estimator (MRE) in the mean squared 

error matrix criterion are derived. A numerical example with Monte Carlo simulation is given to 

illustrate the theoretical results. 

Introduction 

We consider the standard multiple linear regression model 
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The least squares method is applied to (1.1), we can obtain the least squares estimator 

of  (OLSE) as  

                                         YXXX  1)(̂ = YXS 1  , XXS                                                   (2) 

In 1970, Hoerl and Kennard have introduced a biased estimator called the ridge estimator (RE) to 

overcome the multicolinearity problem, and defined as 

                                              YXkIXXkR
 1)()(̂ , 0k                                       (3) 

Theil and Goldberger (1961) have introduced an estimator for the regression coefficient vector 

  by adding stochastic linear restricted to model（1.1） 

                                                                 Rr                                                                    (4) 

The Mixed Regression Estimator (MRE) has been introduced by Theil and Goldberger (1961) is 

based on sample information (1) with prior information (4), and is given by 

)ˆ()(ˆˆ 111  RrRRSRSM                            (5) 

The restricted Ridge estimator (RRE) has been introduced by Sarkar(1992) is based on sample 

information (1) with prior information (4),and is given by 

)(ˆ kRRE )]ˆ()(ˆ[ 111  RrRRSRSW                        (6) 

where  
11)(  kSIW , XXS  . 

In this paper we introduce another alternative ridge type estimator. We call the new biased 

estimator as the stochastic restricted ridge estimator (SRRE). In the mean squared errors matrix 

sense SRRE will be compared with several other biased estimators, and the necessary and sufficient 

conditions for the superiority over these biased estimators will be derived. 

Some Notations and Lemmas 

Lemma1 Assume square matrixes CA, are not singular, and DB, are matrixes with proper orders, 

then 
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1 1( )A BCD A   1 1 1 1 1( )A B C DA B DA       

Proof see Rao and Toutenburg(1995). 

Lemma2 Let M be a positive definite matrix, namely 

0M ,   be some vector, then  

10 1    MM  

Proof see Farebrother(1976). 

Lemma3 Let ,ˆ
j 2,1j  be two competing linear estimators of  .Suppose that  

0)ˆ()ˆ( 21   CovCovD  

 where )ˆ( jCov   denotes the covariance matrix of j̂ . Then 

0)ˆ()ˆ()ˆ,ˆ( 2121   MSEMMSEM 1)( 2112  cddDc  

where )ˆ( jMSEM  denote the mean squared error matrix and bias vector of j̂ . 

Proof see Trenkler and Toutenburg(1990). 

Lemma4 Let 0nnM , 0nnN , then 

1)( 1

1  NMNM   

where )(Mi denotes the i-th Eigen value of M . 

Proof see Wang et al.(2006). 

Model Specification and Estimation 

Following Sarkar(1992), now we introduce an alternative  Ridge estimator for   as 

                                                                    MSRRE Wk  ˆ)(ˆ                                                          (7) 

where  
11)(  kSIW , XXS  , 

And 

)ˆ()(ˆˆ 111  RrRRSRSM    

is the Mixed Regression Estimator (MRE).  

We  call )(ˆ kSRRE as the stochastic restricted Ridge estimator(SRRE) of  . 

The estimator )(ˆ kSRRE as the OLSE of   is derived by the following model 
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where  

)()( 111 RrRRSRSg   .  

Then the OLSE of   from the augmented model (8) is 

1ˆ ( ) ( ) ( )SRRE k S kI X Y Sg     ˆ
MW                                 (9) 

Comparisons Among Biased Estimators 

We note that for any estimator ̂ of  , its mean squared errors matrix (MSEM) is defined as 

)ˆ(MSEM = )ˆ)(ˆ(  E )ˆ()ˆ()ˆ(   BiasBiasCov                     (10) 

where )ˆ(Cov  is the dispersion matrix and   )ˆ()ˆ( EBias  is the bias vector. 

 For two given estimators 1̂ and 2̂ of  , the estimator 2̂  is said to be superior to 1̂ in the 

MSEM sense, if and only if 

0)ˆ()ˆ()ˆ,ˆ( 2121   MSEMMSEM  
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Let 

 11

* )(   RRSR ,  

Then, the MSEM of the RE, the MRE and the SRRE are given as 
1

**

12)ˆ(   SSAMSEM M  , 

11

12))(ˆ( bbWWSkMSEM R
    

                                             22

2))(ˆ( bbWWAkMSEM SRRE
    

where  

)(1 IWb  , *

1

2 )(   WSIWb . 

If the restriction 

eRr    

is correct, then 

0 , 

and consequently  

0*  .  

Then 

     ))(ˆ())(ˆ(1 kMSEMkMSEM SRRER   WASW   )( 12  

     ))(ˆ()ˆ(2 kMSEMMSEM SRREM  


 11

2 )( bbWWAA  

If the restriction eRr   is not correct, then 0 . Then  

))(ˆ())(ˆ(3 kMSEMkMSEM SRRER    WddddDW  )( 2211  

))(ˆ()ˆ(4 kMSEMMSEM SRREM    22

1

**

12 )( bbSSWWAA     

Where 

               11112 )(   RSRRSRSD  , 1

1

 kSd , *

11

2    SkSd  

In the following theorem, we give the necessary and sufficient condition for the stochastic 

restricted Ridge estimator (SRRE) )(ˆ kSRRE be superior to )(ˆ kR and M̂ in the MSEM sense. 

Theorem1 In the Mean Squared Error Matrix sense, 

(a)when parametric restriction eRr   is true, )(ˆ kSRRE is always superior to )(ˆ kR . 

(b)when parametric restriction eRr   is not true, )(ˆ kSRRE is always superior to )(ˆ kR  

if and only if 1)( 2

1

112   dddDd . 

Proof  (a) Because 

 WASW   )( 12

1   

SRRSSA   )( 11 RR 1   

And 

01   RR ， 

then  

01  SA ， 

so 

01  AS ， 

that is 

01  . 

(b) We firstly prove 

0)( 11112   RSRRSRSD   

According  to(a) has 

01  AS  

but 
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AS 1 1111 )(   RSRRSRS  

Then 

0D . 

Because 

0112

11   SSkdd   

by lemma3 has  

03  1)( 2

1

112   dddDd . 

Now we make comparisons between )(ˆ kSRRE and the Mixed Regression Estimator (MRE) M̂ in 

the following theorem. 

Theorem2 In the Mean Squared Error Matrix sense, when 

1)( 1

1  AWWA  

then )(ˆ kSRRE is superior to M̂ if and only if(a) When parametric restriction eRr   is true, 

then                                                                 1)( 1

1

1   bWWAAb (b) When parametric 

restriction eRr   is not true, then  )([ 2

2 WWAAb   1] 2

11

**

1   bSS   

Proof  (a) For 01  SA ， 0A  and 0WWA , then when 1)( 1

1  AWWA ,where )(1   is the 

maximum Eigen Value of  , by lemma4,we can get 0)(2  WWAA  by lemma3, then has  

02   1)( 1

1

1   bWWAAb . 

(b) From (a) and 1)( 1

1  AWWA , We can get 0)(2  WWAA , by lemma3, then we has     

04    )([ 2

2 WWAAb  1] 2

11

**

1   bSS   

Numerical Examples and Conclusions 

Here we show the numerical comparison of estimators. We put 

1.1 1.4 1.7 1.7 1.8

1.1 1.5 1.8 1.7 1.9
X


  

   

1.8 1.9 2.0 2.3 2.4

1.8 1.8 2.1 2.4 2.5



 , 

16.3 16.8 19.2 18.0 19.5Y  
  

20.9 21.1 20.9 20.3 22.0
 

We firstly obtain the ordinary least square estimator of   

YXXX  1)(̂ = YXS 1

=  598.104169.21  

with  

MSE ( ̂ ) = 332.6172  

and  
2ˆ
OLSE  = 6.8495. 

Consider the following stochastic linear restrictions   Rr , 

 1 1 ,R   2ˆ~ (0, )OLSEe N   

For the MRE, RE and SRRE, their estimated MSE values are obtained by replacing in the 

corresponding theoretical MSE expressions by their OLSE (see Table I).  

 

Table 1 

 k=0 k=0.0001 k=0.0005 k=0.0009 k=0.0010 k=0.010 

MRE 22.0137 22.0137 22.0137 22.0137 22.0137 22.0317 

RE 332.6172 329.4241 317.3342 306.2657 303.6478 206.0209 

SRRE 22.0137 21.8146 21.2777 21.1234 21.1398 65.2605 
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From Table 1, we can see that the SRRE outperforms the MRE when parameter the ridge 

parameter k is small, while the situation is reversed when k becomes large enough. When compared 

to the RE, SRRE always have smaller the MSE values for different values of k. And the results 

agree with our theoretical findings in Theorems 1 and 2. We can see that our estimator is more 

meaningful in practice. 

Acknowledgment 

This work is supported by the Humanity and Social Science Youth Foundation of Ministry of 

Education of China (No. 15YJCZH055). 

References 

[1] CR .Rao, H. Toutenburg , “Linear models: least squares and alternatives,” Springer.New 

Yor,1995. 

[2] RW. Farebrother, “Further results on the mean square error of ridge regression,”J R Stat Soc B, 

38:248–250,1976. 

[3] H.Toutenburg, “Mean square error matrix comparisons between biased estimators: an overview 

of recent results,” Statistical Papers 31:165–179,1990. 

[4] SG .Wang et al, “Matrix inequalities,”2nd edu,Chinese Science press, Beijing, 2006. 

[5] Nityananda Sarkar. “A new estimator combining the ridge regression and the erestricted least 

squares methods of estimation”. Communications in statistics-Theory and Methods.21 (7), 

pp.1987–2000, 1992 

[6] S.Kaciranlar, S.Sakallioglu, F.Akdeniz, G. P. H.Styan, H. J Werner. “A new biased estimator in 

linear regression and a detailed analysis of the widely-analysed dataset on Portland Cement”. 

Sankhya Indian J. Stat. 61(B): 443-459, 1999. 

[7] M. H Hubert, P.Wijekoon. “Improvement of Liu estimator in linear regression model”. Stat. 

Pap. 47: 471-479, 2006. 

[8] H.Yang, J. W. Xu. “An alternative stochastic restricted Liu estimator in linear regression”. Stat. 

Pap. 50: 639-647, 2009. 

[9] Y. L. Li, H. Yang. “A new stochastic mixed ridge estimator in linear regression model”. Stat . 

Pap. 51: 315-323, 2010. 

[10] C. R.Rao, H.Toutenburg, H. C. Shalabh. “Linear Models and Generalizations- Least Squares 

and Alternatives”. Berlin: Springer, 2008. 

[11] G.Trenkler, H. Toutenburg. “Mean square error matrix comparisons between biased estimators: 

an overview of recent results”. Stat. Pap. 31, pp.165-179, 1990. 

[12] M. H. J. Gruber,. “Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression 

Estimators”. New York: Marcell Dekker, 1998. 

[13] F. Akdeniz, H. Erol. “Mean squared error matrix comparisons of some biased estimators in 

linear regression”. Comm. Stat. Theor. Meth. 32: 2389-2413, 2003 

[14] H. Yang, X. Chang, D. Q. Liu. “Improvement of the Liu Estimator in Weighted Mixed 

Regression”. Comm. Stat. Theor. Meth. 38: 285-292, 2009. 

[15] Y. L.Li, H.Yang. “A new stochastic mixed ridge estimator in linear regression model”. Stat . 

Pap. 51: 315-323, 2010. 

 

310




