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Abstract. Transfer matrix method for multibody system (MSTMM) is a new and efficient method 

for multibody system dynamics (MSD) developed in recent 20 years. Based on many advantages of 

MSTMM in studying MSD, the rapid and accurate computation problem of vibration characteristics 

of a complex multiple launch rocket system (MLRS) are solved in this paper. The dynamics model, 

the transfer equations of elements, the overall transfer equation and the eigenfrequency equation are 

established. The results got by MSTMM were validated by modal tests, and compared with ordinary 

dynamics method, the computational speed has been increased 65 times. 

Introduction 

With the development of modern industry, lots of complex mechanical systems have appeared in the 

fields of weaponry, aeronautics, astronautics, vehicle, robot and precision machinery, which can be 

considered as multibody system composed of many rigid and flexible bodies connected with hinges. 

The methods for multibody system dynamics (MSD), such as Wittenburg method [1], Schiehlen 

method [2], Kane method [3] and the others [4-6], have developed rapidly in the last 40 years and 

provided a powerful tool to study mechanical system dynamics. Generally speaking, almost all 

ordinary methods for MSD have the same characteristics as follows: it is necessary and very 

complicated to develop the global dynamics equations of the system; the order of system matrix 

depends on the number of degrees of freedom of the system hence is rather high for complex 

multibody system. 

For a complex multibody system like a complex multiple launch rocket system (MLRS), the 

problem is, if using ordinary dynamics methods to compute the vibration characteristics, it would 

face not only the difficulties of high order of system matrix and slow computational speed that can 

not meet engineering requirements, but also the computation failure due to unavoidable 

computational ill-condition of eigenvalue problem. And because of the coupling of rigid and flexible 

bodies, the eigenvalue problem of multibody system is not self-adjoint.  

As a brand new method for MSD gradually developed in recent 20 years, transfer matrix method 

for multibody system (MSTMM) [7-10] has greatly simplified the solving process of complex MSD, 

highly improved the computational efficiency, and provided a powerful tool for MSD study for its 

features as follows: without global dynamics equations of the system, high programming, low order 

of system matrix and high computational speed. MSTMM avoids computational ill-condition of 

eigenvalue problem of complex linear multiple system for its low order of system matrix. By 

presenting automatic deduction theorem of overall transfer equation of multibody system [10], the 

overall transfer equation of multibody system can be deduced automatically. MSTMM provides the 

theoretical basis for studying and solving the dynamics problem of complex mechanical system thus 

has been widely used in engineering. 
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Dynamics Model of the MLRS 

The dynamics model of MLRS is shown in Fig.1, the body elements and hinge elements are 

numbered uniformly. The elements 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 20, 22, l524  , l525  are 

considered as elastic hinges, 2, 5, 8, 11, 14, 17, 19, 21, 23, l526  are considered as rigid bodies, 

and l527  , l528  are considered as elastic beams transversely vibrating in space. )18,,2,1( ll  

is the sequence number of the launch tube loading the newly launching rocket. There’re 8 boundary 

ends in the system, which are numbered as 0. The dynamics model of MLRS is a multi-rigid-flexible 

system, which is composed of 28 rigid bodies and 18 flexible bodies connected with various linear 

springs, rotary springs and dampers respectively. 
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Figure 1.  Dynamics model of the MLRS 

The Eigenfrequency Equation of the MLRS 

State Vectors. According to MSTMM, the state vector of each connection point or boundary end is 

defined as  

T

, ][ zyxzyxzyxji QQQMMMΘΘΘZYXZ                      (1) 

where, T],,[ ZYX , T],,[ zyx ΘΘΘ , T],,[ zyx MMM , T],,[ zyx QQQ are the modal coordinates of linear 

displacements, angular displacements, internal torques and internal forces of a connection point 

relative to the equilibrium position along zyx ,,  directions in the inertia coordinate system oxyz  

respectively. 

The Transfer Equations of Elements. According to MSTMM, the transfer equations of any 

element j  (body or hinge) with single input end and single output end vibrating in space can be 

expressed as 

IjjOj ,, ZUZ                                                                  (2) 

where, Ij ,Z  and Oj ,Z  are respectively the state vectors of the input end and the output end, jU  is 

the transfer matrix of element j . 
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Figure 2.  A rigid body with multiple input ends and single output end vibrating in space 
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For a body element with more than two connection ends, only one of the ends is considered as 

output end, and all the other ends are considered as input ends. The transfer equations should cover 

the geometrical relationship between its first input end 1I  and output end O , and the mechanical 

principle for the forces and moments acting on the element. Moreover, geometrical equations, which 

describe the geometrical relationship between the first input end 1I  and ),3,2(th Lkk   input end 

kI  of the body, should be introduced. As shown in Fig.2, for a rigid body element j  with 

)2( LL  input ends and single output end, the transfer equations and geometrical equations of the 

body can be written in the following forms 

LL IjIjIjIjIjjOj ,,,,,, 221
ZUZUZUZ                                             (3) 

),,3,2(,,, 1
Lk

kk IjIjIjj  ZHZH                                               (4) 

where 
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and Oj ,Z  and ),,3,2,1(, Lk
kIj Z  are the state vectors of the output end and the thk input end of 

the body element respectively. jU  is the right transfer matrix of element j  when 1I  and O  are 

considered as the only input end and output end of the element; 
kIj ,U is the corresponding transfer 

matrix which only extracts the force variables (including internal forcce and internal moment) from 

the state vector when multiplying 
kIj ,Z , considering the force terms in the dynamics equations of 

the element. And jH  is a constant matrix extracting displacement variables (including position 

coordinates and orientation angles) from a state vector when multiplying 
1, IjZ , 

kIj ,H  is related to 

the relative position of the first input end 1I  and thk  input end kI  of element. The number of the 

geometrical equations is ( 1L ). For more details about the matrices mentioned above, please check 

reference [7]. 

The Overall Transfer Matrix. According to automatic deduction theorem of overall transfer 

equation of multibody system [10], the overall transfer matrix of the MLRS can be deduced 

automatically as 

0allallZU                                                                  (5) 

where 
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allU  is the overall transfer matrix, 0,iZ  denote the state vectors of boundary ends, l525,23 Z  denotes 

the state vector of the connection cpoint between body element 23 and hinge element l525   in the 

closed loop subsystem. ii 528T denotes successive multiplication of the transfer matrices of all 

elements in the transfer path from the tip to the root (the state vector is 0,528 lZ ). jiG denotes 

successive multiplication of the transfer matrix of all elements in the transfer path from body element 

j  to element i , and premultiplicate )( jH (if 1k ) or premultiplicate 
kIj ,H (if Lk ,,3,2  ). 

O  is zero matrix, 12I  is a 1212  identity matrix, C  is a constant matrix describing the 

relationship between the state vectors in the closed loop subsystem. 

Applying boundary conditions above, getting rid of all zero elements from allZ , then allZ  is 

obtained, getting rid of columns in the overall transfer matrix allU  that correspond to zero elements 

in allZ , then a 6060  square matrix allU  is obtained. We get 

0allallZU                                                                   (6) 

Then the eigenfrequency equation of the MLRS is  

0alldetU                                                                   (7) 

Solving the equation above, the eigenfrequencies )3,2,1( nkωk   can be obtained. 

Vibration Characteristics of the MLRS 

Modal Tests. Modal tests are carried out using the modal measuring devices and modal analysis 

software. The flow chart of test procedure and the distribution of test positions of MLRS are shown 

in Fig.3 and Fig.4 respectively. The first and the third order modal shapes of the MLRS got by test 

are shown in Fig.5 and Fig.6 respectively. The eigenfrequencies of the MLRS got by MSTMM and 

by modal test are shown in Table 1. It can be seen clearly, the results get by MSTMM and by modal 

test have good agreements, which validating the dynamics model, numerical simulation and the 

proposed method used in this paper. 
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Figure 3.  The flow chart of modal test         Figure 4.  Distribution of test positions 

         

  Figure 5.  The first order modal shape         Figure 6.  The third order modal shape 

Table 1  The eigenfrequencies of the MLRS  

 

Modal MSTMM [Hz] Test [Hz] Relative error [%] 

1 2.76 2.77 -0.36 

2 2.99 2.99 0.00 

3 3.96 3.94 0.51 

4 4.32 4.25 1.60 

5 —— 5.01 —— 

6 5.33 5.23 1.90 

Computational Time. For the same dynamics model of the MLRS in this paper, MSTMM and 

ordinary dynamics methods (using ANSYS software) are used to compute the vibration 

characteristics. Under the same solution accuracy, the computational time of vibration characteristics 

are shown in table 2. It is clear that, comparing with ordinary dynamics methods, the computational 

speed has been increased more than 1000 times by using MSTMM. 

Table 2  Computational time of vibration characteristics 

 

Dynamics methods Computational time [s] Computational time ratio 

ANSYS 11.06 
65:1 

MSTMM 0.17 
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Conclusions 

Benefiting from its features as follows: without global dynamics equations of the system, high 

programming, low order of system matrix and high computational speed, MSTMM provides the 

theoretical basis for studying and solving the dynamics design problem of a complex MLRS, its high 

efficiency and validity have been verified. Under the same solution accuracy and compared with 

ordinary dynamics methods, the computational speed has been increased more than 65 times by 

using MSTMM.  
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