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Abstract. In this work, by employing the Hausdorff measure of no compactness, controllability of
fractional impulsive neutral functional inclusions with a noncom pact semi group in a Banach space
has been addressed where a multifunction is of Caratheodory type. Sufficient conditions for the
controllability are established using topological degree theory for condensing operators.

Introduction and Preliminaries.

Theory of measure of no compactness has found various applications in the existence of solutions of
systems [1, 2] and inclusions [3] in Banach spaces. Up to now, controllability analysis is not available
for fractional impulsive neutral functional inclusions with a noncom pact semi group in a Banach
space using measure of no compactness whereby in this paper, controllability of the system has been
presented using topological degree theory for condensing operators in terms of Hausdorff measure of
no compactness.

Consider the following fractional impulsive neutral functional inclusions with a noncompact
semigroup:

%[x(t)— g(t, x)1e (AX)(t) + (Bu)(t) + F(t, x), te I =[0,b], t = 7, k =1,2,---,m; (1)
AX|_, =1 (X(z)), k=12, m; )
X =¢<B, (3)

where the state X(-) belongs to Banach space E endowed with the norm|{, 0 < g <1. The control

function u(-) takes values in a Banach space L*(J,U) of admissible control functions. Operator A
generates a strongly continuous noncompact semigroup of bounded linear operators T(t) in E. B is a
bounded linear operator from a Banach space U into E. Ax|_, =x(z,)—X(z,), for all k=1,2,---,m,

O=r,<7,<7,<--<7,<7,, =Db.Let x () denote x (8) =x(t+8), e (—x,0].

Assume V: (—o, 0] — (0, +0) is a continuous function satisfying | = J‘_O v(t)dt < co. Banach

space (B,, ||-||BV) induced by function v is defined as follows.

B, = {(p: (—o0, 0] > E: for any c>0, ¢(0)is a bounded and measurable function on [-c,0], and

Iiov(s)- sup | p(0) [ds < +oo}

$<6<0

endowed with norm ||(p||BV = jo v(s)-sup | p(8) ds.
- $<0<0
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Let us define the space B, :={¢: (w0, b] > E: ¢, e C(J,, X) and exists p(t, ) and p(t;) with
ot) = (t) @ =#B, k=0,L---,m}
where ¢, is the restriction of ¢to J,, J, =[0,t], J, =(t,t. ] k=L2---,m.

Denote by ||||Bv a seminorm in the space B, defined by

el =lelly, +sup{le(s)1:s [0, b}, for p e B,

Define Banach space (B;, ”'”B»') induced by the space B,
B, ={peB,:0=¢,<B, | with norm |l =sup{l ¢(s):s <[0,b]}
Let space B, = {qp €B, :||qo||&. < r} for some r >0, then B, , for each r, is a bounded, closed

convex subset in X.
Before proceeding, we recall some supporting definitions and properties which will help in
developing our main results in the next section.

Definition 1.1 A function x: (-0, b] — E s called a mild solution of the system Eq.(1)-Eq.(3), if
the impulsive condition Ax|_, =1, (x(z,)), k=12,---,m, is verified, the restriction of x(-)to the

interval J, (k=0,1,---,m) s continuous and the following integral equation holds: for te J,
1

x(®) =T ®)[¢(0)-g(0, #)]+9(t, x) +mﬁ (=) T (t—S)[Ag(s, x,) +(Bu)(s) + f (s)lds

+ Z T(t—7)1,(X(z,))

O<r <t

where f eP.(x):={f eC(J;E): f(t) e F(t, %), ae.teJ}and uel?*(J;V)
Definition 1.2 The system Eq.(1)-Eq.(3) is said to be controllable on the interval J if for every
initial function ¢ e C((—0, 0], E)and x, € E, there exists a control u e L*(J,U) such that mild

solution x(t) of Eq.(1)-Eq.(3) satisfies x(b) = x,
Lemma 1.1 Assume xe B,, thenforteJ, x €B,.

Moreover, 1] x(t) [<[[x[|y <[], +1SUP.so.]X(S)]

Lemma 1.2 Let V be a bounded open neighbourhood of zero in Banach space ¢ and
F:V - K,(&)an u.s.c. B condensing multimap satisfying the boundary condition x & AF (x)

forall xeoVand 0< A <1, where K, (X)denotes the collection of all nonempty compact-convex
subsets of X. Then Fix(F) = ¢.

Lemma 1.3 Let ®:C(J;E) — C(J;E) be an abstract operator satisfying the following conditions:
(S1) there exists D > 0such that~|©f —©g|, <D|f —g|. . vf,geC(J;E)

(S2) for each compact set K = E and sequence { f,} = C(J;E)such that {f (t)} cKforae. teJ,
the weak convergence f, — f implies~Of — ©f,.

Then the composition operator ®- P :C(J;E) —» C(J; E) s a u.s.c. multimap with compact values.
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Lemma 1.4 Cauchy operator G:C(J; X) — C(J; X) defined by
(GF)(t) = % I; (t—s)*'T (t —s) f (s)ds satisfies properties (S1)-(S2).
q

Lemma 1.5 Let E be a Banach space and @:[0,b] — P(E) an integrable, integrably bounded
multifunction such that X_ (¢(t)) < p(t) for a.e.t €[0, b]Jwhere p()eC(J,R,).

Then X, [% I; (t— s)q‘1¢(s)ds} < %J}: (t—s)*p(s)ds forall t[0,b],0<q<1

Main Results

To investigate the controllability of system Eq.(1)-Eq.(3), we assume the following conditions:
(H1) Operator A is the infinitesimal generator of a noncompact semigroup of bounded linear

operators T(t) in X satisfying [T (t)]| <M for some M >1 when t>0.

(H2) The linear operator W : L*(J;U) — E, defined by Wu = %j; (b—3)""T(b—s)(Bu)(s)ds,
q

has an invertible operator W™ taking values in L*(J,U)\KerW and there exist positive
constants M, , M, such that [|B]| < M, [W < M,.
(H3) There exist positive constants y, yé, 7, such that the following Lipschitz conditions hold:
latt x) =9t R)[ <7y [ — &, , [Ag(t. %)~ Ag(t. L) < 7glIx — %, ,
[T (x@) = 1, RO)] < 71 [ x@®) - )|
(H4)The multivalued nonlinearity F:JxB, — K, (E) satisfies the following conditions:
(H4) F(,x):J - K, (E)admits a measurable selection for every x, € B, .
(H4") F(,-):B, >K,(E)isus.c.forae. tel
(H4™) there exist a functionh(-) e C(J; R,) and a nondecreasing function y : R, — R, such that
IF (%) < h(t)l//(”X[”Bv)fOI’ aetel.
(H5) there exists a function k(-) e L-(J) such that X_(F(t, M))<k(t)X (M) for every
bounded set M < B, .
(H6) there exists a function X () L, (J) such that X, (W ™(M,)(t)) < X (t) X (M,) for every

bounded setM, c E
In view of hypothesis (H2), for an arbitrary function x(-), the control is defined as follows:

0 =W [ -TO)H0) 90, 9) ~9(0, 1)~ 1 5 |, 0-9) T-9)(Ag(s,x) + ()
—iT(b—rk)lk(xm»}(t), feP(0) @

In what follows, it suffices to show that when using this control the multi-valued operator
I" defined by
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$(t), t € (—o0, 0]

(I() = {z(t) & X 2(0) =T@B(0) - (0. #) + 5(t, x) + = [ (1) T (t-5)(Ag(s, X,)

r'(q)
+(Bu)(s)+ f(s)ds+ > T(t-r)l (x(57)), f ePF(x)}, ted

O<ry <t

has a fixed point x(-) from which it follows this fixed point is a mild solution of the system Eq.(1)-

Eq.(3). Clearly, x(b)=(I"x)(b) = x,, which concludes that the system is controllable.
Let X(t) = y(t)+d(t), t e (oo, b], where 4 is taken as ¢(t) for t e (—oo, 0] while for t  J, defined
as T(t)¢(0).

Define the operator Q by

0,t e (—oo, 0]

(Qy)(t) = {Z(t)ex z (1) =-T()9(0, ¢)+9(t, yt+¢t)+—f (t=5)" T (t—s)(Ag(S, Y, +4.)

+BU)S)+ f(s)ds+ X T(t-r)l (Y ) +6(z), f eF’F(y)}, tel

O<ry <t

Obviously, the operator Q has a fixed point if and only if operator I' has a fixed point. In the
sequel, we shall consider the operator ®:C(J;E) — C(J; E) defined by

(@f)() =-T(1)a(0, ¢) +9(t, yt+¢t)+—j (t=5)"'T(t—s)(Ag(S, Y, +4.)

+(BU)S)+ f(s))ds+ D T(t-7)1, (¥(7) +6(x)

O<ry <t

Where, u takes values in the equation (4).
Lemma 2.1 The operator © satisfies properties (S1)-(S2).

Proof. In view of alternative representation of operator ® of the form
A 1 ¢t - ~
©f)(t) =-T(t)9(0, #) +9(t, y, +4) +@L (t—5)""T(t—s)(Ag(s, y, +4¢.)ds

+ 3 T- ) (Y(z) +d(7)) + (GF)(ER) +(©, F)(1)

O<7 <t

Where

(®f)(t)—mf (t=)" T (t-s)BW *[x ~T(B)(4(0) - 9(0, #)) -9 (b, ¥, + )

e )f (b—3)""T(b-S)(AG(s, ¥, +4,) + f (5))ds - ZT(b 7)1, (X(Tk))}(s)ds
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It remains, by lemma 2.4, only to prove the assertion for operator ©,

Stepl. To verify that operator ©, satisfies property (S1). For any function f, he C(J;E), we have
that

[(®, 1))~ (®.h)1)]

j (t—s)" T (t—s)BW" { (1q) J.;(b—r)q‘lT(b—r)(h(r)—f(r))dr}(s)ds

-

“r@?

’v\/ [F( )I (b—7)"* T (b-7)(h(z) - f(r))dr}(s)

u M {F( 1 j (b—17)"*T(b— T)(h(f)—f(r))dr}(s)

bq
g+l
bCI
I(q+1) I'(q) %

< NiM, M,

j(b )T (b—7)(h(z) - f (r))dz

‘F(q)

<M?M,M, — j (b—7)"dz- SUpIIh(r)— f(2)|

From which it follows that ||@, f —@,h|. < M*M,M, ( ] If =h.
rq+1)

Step 2. To verify that operator ®, satisfies property (S2). Operator ®, may be alternatively

Cast in the form

(©,)(t):=G(BW[x ~T(b)(¢#(0)-9(0, #)) — g (b, ¥, + )

TG ).[ (b—s)**T(b—s)Ag(s, Y, +¢,)ds — ZT(b )l (X(z, ) - QGfD

Where 68:C(J;E) > E, 8y =y(T)is a bounded linear operator? Then in view of lemma 2.4, the
proof is completed.

From lemmas 2.3 and 3.1, we can conclude straightforwardly that:
Lemma 2.2 The multioperator Q is u.s.c. and has compact-convex values.
Lemma 2.3 Under the condition

-supk(s) <1 (5)

b e
N+ NN,
[ R e ()] T(Q+1) o)

( l) sel

The multioperator Q is S -condensing, where positive constants N, N, are such that

T <N, B[ <

SUP.;

Proof. Assume that M < B, is a bounded set satisfying
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QM) = (M) (6)

In the sense of order generated by the cone R?. It is sufficient to prove that M is a precompact set.

By virtue of lemma 2.5 and (H5), it is easy to show that

) No(M) / as Np(M)b
Xe(Go P (M)(V) < =5 T2 [ -9 (s)ds < asupk(s) )

Direct derivation, in view of the hypothesis (H6) and inequality (7), has that

Xe ({Tt=5)BW [ ~T(0)($(0) - g(0, #)) 5 . ¥, +¢3b>—ﬁ [ b-5)"T(b-s)-

(Ag(s, Vs +6,)+ f(S))dS—Zri‘,T(b—Tk)lk(X(fk_))}(S)1 fe PF(M)}J

< NN, X (3) X H%ﬂ’ (b—5)* ' T(b—s)F(s)ds: feP.(M )}j v
s%ggk@)-ﬂhﬂ)
From which it follows that
X (@, P, (M)(1) < ?‘:qubl; SUpk(s)- p(M )-% [{t-9)" X (s)ds 9
) SO X ot ’

Since it is easy to obtain that

(t—s)"T (t—s)Ag(s, Y, +4,)ds

0

. 1
QM)() c-T(1)g(0, g)+a(t, y, +¢t)+mj

+ z T(t—rk)lk(y(rk’)+(3(rk‘))+GoPF(M)(t)+®1oPF(M)(t), foranyteJ

O<r <t
We have, along with the equalities (7) and (9), that

Xe(QM)(1)) < Xe (G o P (M)(1)) + X (O, o B (M)(1))

<| N+N°N LsupX(s) b* -supk(s)-p(M) (10)
N 'T(q+1) s r(Q+1) s

Which, in turn, yields that o(Q(M)) < yo(M), where

b? b? .
=| N+N?N sup X (s -supk(s)<1. The assertion @(M)=0 follows from
4 [ l1“(q+1) SEJp ()jl“(q+1) sdp (s) »M)

the condition (5) along with the combination of (6) and (10). The remaining proof follows from the
analogous techniques used in [6-10]. Before proceeding, we shall need the following assertion.

Lemma 2.4 Assume that z € AQ(y) for some0< A<1,i.e., z =10(f), where f e P.(y). Then

The following relation holds:
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|z @] <C.dl, +C. Iyl + M 6+ (1)

b'M b'™M . ~ ) m
Ty _I(yg r(q+1)7g]+M71(71"2k17k)

» - b? [}
C,:=| M+M*M M,
I'\g+1) )I'(q+1

Where C, = (M +1)y,

Proof. In view of lemma 2.1, we have that
7 (t)=-AT (1)9(0, )+ Ag(t, yt+¢t>+— [[(t=9)""T(t-5)Ag(s, v, +4)ds

+ 2 Y T=r ) (Y(5) +d(z)) + AGH(E) + A, F)(t)

O<7 <t

N M
<M lole 74w+, + o 7o sl +M02<tkay(rk)+¢(rk)H 12)
LY MMM[ i ]nfn

C(g+1)" ™ r(q+1)

<Cilgl, +C. (vl + M @)+ sl

Theorem 2.1 Under the conditions (H1)-(H6), suppose that there exists a constant L>0 such that
L

= — >1
C. g, +C. (L+M @)+ C [, v (], +1 (L +M g

(13)

Where the constants C,, C,and C,are those given as in lemma 3.4. Then system Eq.(1)-Eq.(3) is
controllable on the interval J.

Proof. Suppose that y e AQ(y)for some ye B, and0< A <1, theny=A0(f), f € P-(y). Using

Lemma 3.4 and no decreasing property of functiony () , we can easily yield that
[¥lle <Culel, +C. (Il +M 2O+ Cs Il
<Cy[l¢ly, +C. (Ivll. +M 6O)+ Cs il w (ol +1(L+M g()]))

If we takeV = {y eB,|y|. < L}, then from inequality (11), we have that y ¢ AQ(y), for any

y e oV And0< 4 <1, and moreover using lemmas 2.2, 3.2 and 3.3, the proof is completed.
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