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Abstract. In this work, by employing the Hausdorff measure of no compactness, controllability of 

fractional impulsive neutral functional inclusions with a noncom pact semi group in a Banach space 

has been addressed where a multifunction is of Caratheodory type. Sufficient conditions for the 

controllability are established using topological degree theory for condensing operators. 

Introduction and Preliminaries.  

Theory of measure of no compactness has found various applications in the existence of solutions of 

systems [1, 2] and inclusions [3] in Banach spaces. Up to now, controllability analysis is not available 

for fractional impulsive neutral functional inclusions with a noncom pact semi group in a Banach 

space using measure of no compactness whereby in this paper, controllability of the system has been 

presented using topological degree theory for condensing operators in terms of Hausdorff measure of 

no compactness. 

Consider the following fractional impulsive neutral functional inclusions with a noncompact 

semigroup: 

[ ( ) ( , )] ( )( ) ( )( ) ( , ), [0, ], , 1,2, , ;
q

t t kq

d
x t g t x Ax t Bu t F t x t J b t k m

dt
                             (1) 

| ( ( )), 1,2, , ;
kt k kx I x k m  

                                                                                                     (2) 

0 : vx B                                                                                                                                      (3) 

where the state x(  ) belongs to Banach space E endowed with the norm , 0 1q   . The control 

function  u(  ) takes values in a Banach space 2 ( , )L J U of admissible control functions. Operator A 

generates a strongly continuous noncompact semigroup of bounded linear operators T(t) in E. B is a 

bounded linear operator from a Banach space U into E. | ( ) ( )
kt k kx x x   

   , for all k=1,2, ,m, 

0 1 2 10 m m b            . Let ( )tx   denote ( ) : ( ), ( , 0]tx x t      . 

       Assume : ( , 0] (0, )v    is a continuous function satisfying 
0

( )l v t dt


   . Banach 

space ( , )
v

v B
B  induced by function v is defined as follows. 

        : : ( , 0] :vB E   for any c>0, ( )  is a bounded and measurable function on [-c,0], and 

0

0

( ) sup | ( ) |
s

v s ds


 
  

    

endowed with norm 
0

0

: ( ) sup | ( ) |
vB

s

v s ds


  
  

  . 
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Let us define the space ' : : ( , ] : ( , )v k kB b E C J X     and exists ( )kt  and ( )kt  with 

0( ) ( ), , 0,1, ,k k vt t B k m        

where k is the restriction of  to 0 1 1, : [0, ], : ( , ], 1,2, , .k k k kJ J t J t t k m     

Denote by '
vB

 a seminorm in the space '

vB defined by 

 '

'sup | ( ) |: [0, ] ,
v v

vB B
s s b for B        

Define Banach space '

"( , )
v

v B
B  induced by the space '

vB  

 " '

0: : 0v v vB B B     with norm  ' sup | ( ) |: [0, ]
vB

s s b    

Let space  '

": :
v

r v B
B B r    for some 0r  , then rB , for each r, is a bounded, closed 

convex subset in X.  

Before proceeding, we recall some supporting definitions and properties which will help in 

developing our main results in the next section. 

Definition 1.1  A function : ( , ]x b E  is called a mild solution of the system Eq.(1)-Eq.(3), if 

the impulsive condition | ( ( )), 1,2, ,
kt k kx I x k m  

   , is verified, the restriction of ( )x  to the 

interval ( 0,1, , )kJ k m is continuous and the following integral equation holds: for t J , 

         1

0

1
( ) ( ) (0) (0, ) ( , ) ( ) ( )[ ( , ) ( )( ) ( )]

( )

t
q

t sx t T t g g t x t s T t s Ag s x Bu s f s ds
Γ q

           

                  
0

( ) ( ( ))
k

k k k

t

T t I x


  

 

   

where  ( ) : ( ; ) : ( ) ( , ), . .F tf P x f C J E f t F t x a e t J     and 2( ; )u L J U  

Definition 1.2 The system Eq.(1)-Eq.(3) is said to be controllable on the interval J if for every 

initial function (( , 0], )C E  and 1x E , there exists a control 2( , )u L J U such that mild 

solution x(t) of Eq.(1)-Eq.(3) satisfies 1( )x b x  

Lemma 1.1 Assume '

vx B ，then for , t vt J x B  .  

Moreover, [0, ]| ( ) | sup | ( ) |
v v

t s tB B
l x t x l x s     

Lemma 1.2 Let V be a bounded open neighbourhood of zero in Banach space  and 

: ( )vF V K  an u.s.c.   condensing multimap satisfying the boundary condition ( )x F x  

for all x V and 0 1  , where ( )vK X denotes the collection of all nonempty compact-convex 

subsets of X. Then ( )Fix F  . 

Lemma 1.3 Let : ( ; ) ( ; )C J E C J E  be an abstract operator satisfying the following conditions: 

(S1) there exists 0D  such that~ , , ( ; )
C C

f g D f g f g C J E       

(S2) for each compact set K E and sequence   ( ; )nf C J E such that  ( )nf t K for a.e. t J , 

the weak convergence 0nf f implies~ 0nf f  .  

Then the composition operator : ( ; ) ( ; )FP C J E C J E  is a u.s.c. multimap with compact values. 
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Lemma 1.4  Cauchy operator : ( ; ) ( ; )G C J X C J X  defined by 

1

0

1
( )( ) : ( ) ( ) ( )

( )

t
qGf t t s T t s f s ds

q

  
  satisfies properties (S1)-(S2). 

Lemma 1.5  Let E be a Banach space and :[0, ] ( )b P E   an integrable, integrably bounded 

multifunction such that ( ( )) ( )EX t p t  for a.e. [0, ]t b where ( ) ( , )p C J R  .  

Then 1 1

0 0

1 1
( ) ( ) ( ) ( )

( ) ( )

t t
q q

EX t s s ds t s p s ds
q q

  
   

  
   for all [0, ], 0 1t b q    

Main Results 

To investigate the controllability of system Eq.(1)-Eq.(3), we assume the following conditions: 

(H1) Operator A is the infinitesimal generator of a noncompact semigroup of bounded linear 

operators T(t) in X satisfying ( )T t M for some 1M   when 0t  . 

(H2) The linear operator 2: ( ; )W L J U E , defined by 1

0

1
( ) ( )( )( )

( )

b
qWu b s T b s Bu s ds

q

  
  , 

has an invertible operator 1W   taking values in 2( , ) \L J U KerW and there exist positive 

constants 1 2,M M such that 1

1 2, .B M W M   

(H3) There exist positive constants ', ,g g k    such that the following Lipschitz conditions hold: 

ˆ ˆ( , ) ( , )
v

t t g t t B
g t x g t x x x   , 'ˆ ˆ( , ) ( , )

v
t t g t t B

Ag t x Ag t x x x   ,

ˆ ˆ( ( )) ( ( )) ( ) ( )k k kI x t I x t x t x t    

(H4)The multivalued nonlinearity : ( )v vF J B K E   satisfies the following conditions: 

(H4')  ( , ) : ( )t vF x J K E  admits a measurable selection for every t vx B . 

(H4'')  ( , ) : ( )v vF t B K E  is u.s.c.for a.e. t J  

(H4''') there exist a function ( ) ( ; )h C J R   and a nondecreasing function : R R   such that 

( , ) ( ) ( )
v

t t B
F t x h t x for a.e. t J . 

(H5) there exists a function 1( ) ( )k L J  such that ( ( , )) ( ) ( )E EX F t M k t X M for every 

bounded set "

vM B . 

(H6) there exists a function 1( ) ( )X L J  such that 1

1 1( ( )( )) ( ) ( )U EX W M t X t X M  for every 

bounded set 1M E  

In view of hypothesis (H2), for an arbitrary function ( )x  , the control is defined as follows: 

1 1

1
0

1
( ) ( )( (0) (0, )) ( , ) ( ) ( )( ( , ) ( ))

( )

b
q

b su t W x T b g g b x b s T b s Ag s x f s ds
q

         
   

1

( ) ( ( )) ( ), ( )
m

k k k F

k

T b I x t f P x  




  


                                                                         (4) 

In what follows, it suffices to show that when using this control the multi-valued operator 

 defined by 
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1

0

0

( ), ( , 0]

1
( )( ) ( ) : ( ) ( )( (0) (0, )) ( , ) ( ) ( )( ( , )

( )

( )( ) ( )) ( ) ( ( )), ( ) ,
k

t
q

t s

k k k F

t

t t

x t z t X z t T t g g t x t s T t s Ag s x
q

Bu s f s ds T t I x f P x t J




 

 





 




 



        


      
 





 

has a fixed point ( )x  from which it follows this fixed point is a mild solution of the system Eq.(1)- 

Eq.(3). Clearly, 1( ) ( )( )x b x b x   , which concludes that the system is controllable. 

Let ˆ( ) ( ) ( ), ( , ]x t y t t t b    , where ̂  is taken as ( )t  for ( , 0]t   while for t J , defined 

as ( ) (0)T t  . 

Define the operator   by 

' ' 1

0

0

0, ( , 0]

1ˆ ˆ( )( ) ( ) : ( ) ( ) (0, ) ( , ) ( ) ( )( ( , )
( )

ˆ( )( ) ( )) ( ) ( ( ) ( )), ( ) ,
k

t
q

t t s s

k k k k F

t

t

y t z t X z t T t g g t y t s T t s Ag s y
q

Bu s f s ds T t I y f P y t J


  

   



 

 




 



          


       
 





 

Obviously, the operator   has a fixed point if and only if operator  has a fixed point. In the 

sequel, we shall consider the operator : ( ; ) ( ; )C J E C J E  defined by 

1

0

0

1ˆ ˆ( )( ) : ( ) (0, ) ( , ) ( ) ( )( ( , )
( )

ˆ( )( ) ( )) ( ) ( ( ) ( ))
k

t
q

t t s s

k k k k

t

f t T t g g t y t s T t s Ag s y
q

Bu s f s ds T t I y


  

   



 

 

        


    




 

Where, u takes values in the equation (4). 

Lemma 2.1 The operator  satisfies properties (S1)-(S2). 

Proof.  In view of alternative representation of operator  of the form 

1

0

1

0

1ˆ ˆ( )( ) : ( ) (0, ) ( , ) ( ) ( )( ( , )
( )

ˆ( ) ( ( ) ( )) ( )( ) ( )( )
k

t
q

t t s s

k k k k

t

f t T t g g t y t s T t s Ag s y ds
q

T t I y Gf t f t


  

   



 

 

        


     




 

Where 

1 1

1 1
0

1

0
1

1 ˆ( )( ) : ( ) ( ) ( )( (0) (0, )) ( , )
( )

1 ˆ( ) ( )( ( , ) ( )) ( ) ( ( )) ( )
( )

t
q

b b

mb
q

s s k k k

k

f t t s T t s BW x T b g g b y
q

b s T b s Ag s y f s ds T b I x s ds
q
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It remains, by lemma 2.4, only to prove the assertion for operator 1  

Step1. To verify that operator 1 satisfies property (S1). For any function , ( ; )f h C J E , we have 

that  

1 1

1 1 1

0 0

1 1 1

1
0 0

1 1

1

( )( ) ( )( )

1 1
( ) ( ) ( ) ( )( ( ) ( )) ( )

( ) ( )

1 1
( ) ( ) ( )( ( ) ( )) ( )

( ) ( )

1
sup ( ) (

( 1) ( )

t b
q q

t b
q q

q
q

s J

f t h t

t s T t s BW b T b h f d s ds
q q

MM t s W b T b h f d s ds
q q

b
MM W b T

q q

    

    



  

  

 



  

 
      

  

 
     

  

  
  

 

 

0

1

1 2
0

2 1

1 2
0

2

2

1 2

)( ( ) ( )) ( )

1
( ) ( )( ( ) ( ))

( 1) ( )

1
( ) sup ( ) ( )

( 1) ( )

( 1)

b

q
b

q

q
b

q

t J

q

C

b h f d s

b
MM M b T b h f d

q q

b
M M M b d h f

q q

b
M M M f h

q

   

    

   







 
  

 

   
  

   
  

 
  

  







 

From which it follows that 

2

2

1 1 1 2
( 1)

q

C C

b
f h M M M f h

q

 
    

  
 

Step 2. To verify that operator 1  satisfies property (S2). Operator 1 may be alternatively 

Cast in the form  

 1

1 1

1

0
1

ˆ( )( ) : ( )( (0) (0, )) ( , )

1 ˆ( ) ( ) ( , ) ( ) ( ( ))
( )

b b

mb
q

s s k k k

k

f t G BW x T b g g b y

b s T b s Ag s y ds T b I x Gf
q

  

   



 



     


       
  


 

Where : ( ; ) , ( )C J E E y y T   is a bounded linear operator? Then in view of lemma 2.4, the 

proof is completed. 

From lemmas 2.3 and 3.1, we can conclude straightforwardly that: 

Lemma 2.2 The multioperator   is u.s.c. and has compact-convex values. 

Lemma 2.3   Under the condition 

2

1 sup ( ) sup ( ) 1
( 1) ( 1)

q q

s J s J

b b
N N N X s k s

q q 

 
   

    
                                                                   (5) 

The multioperator   is  -condensing, where positive constants 1,N N are such that 

( ) ( )

1sup ( ) ,
X X

t J T t N B N   . 

Proof.  Assume that "

vM B  is a bounded set satisfying  
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( ( )) ( )M M                                                                                                                        (6) 

In the sense of order generated by the cone 2R
. It is sufficient to prove that M is a precompact set. 

By virtue of lemma 2.5 and (H5), it is easy to show that 

1

0

( ) ( )
( ( )( )) ( ) ( ) sup ( )

( ) ( 1)

q
t

q

E F
s J

N M N M b
X G P M t t s k s ds k s

q q

 



   
                                          (7) 

Direct derivation, in view of the hypothesis (H6) and inequality (7), has that 

 1 1

1
0

1

1

1
0

2

1

1ˆ( ) ( )( (0) (0, )) ( , ) ( ) ( )
( )

ˆ( ( , ) ( )) ( ) ( ( )) ( ) : ( )

1
( ) ( ) ( ) ( ) : ( )

( )

( )

b
q

E b b

m

s s k k k F

k

b
q

E F

X T t s BW x T b g g b y b s T b s
q

Ag s y f s ds T b I x s f P M

NN X s X b s T b s f s ds f P M
q

N N X s

  

  

 







        



      

 

  
     

  









sup ( ) ( )
( 1)

q

s J

b
k s M

q




 
 

      (8) 

From which it follows that 

2
11

1
0

2

2

1

1
( ( )( )) sup ( ) ( ) ( ) ( )

( 1) ( )

sup ( ) sup ( ) ( )
( 1)

q
t

q

E F
s J

q

s J s J

N N b
X P M t k s M t s X s ds

q q

b
N N k s X s M

q









 

     
  

 
    

  


                                   (9) 

Since it is easy to obtain that 

1

0

1

0

1ˆ ˆ( )( ) ( ) (0, ) ( , ) ( ) ( ) ( , )
( )

ˆ( ) ( ( ) ( )) ( )( ) ( )( ), for any
k

t
q

t t s s

k k k k F F

t

M t T t g g t y t s T t s Ag s y ds
q

T t I y G P M t P M t t J


  

   



 

 

        


     




 

We have, along with the equalities (7) and (9), that 

1

2

1

( ( )( )) ( ( )( )) ( ( )( ))

sup ( ) sup ( ) ( )
( 1) ( 1)

E E F E F

q q

s J s J

X M t X G P M t X P M t

b b
N N N X s k s M

q q


 

   

 
    

    

                              (10) 

Which, in turn, yields that ( ( )) ( )M M   , where 

2

1: sup ( ) sup ( ) 1
( 1) ( 1)

q q

s J s J

b b
N N N X s k s

q q


 

 
    

    
. The assertion ( ) 0M   follows from 

the condition (5) along with the combination of (6) and (10). The remaining proof follows from the 

analogous techniques used in [6-10]. Before proceeding, we shall need the following assertion. 

Lemma 2.4 Assume that ' ( )z y  for some 0 1  , i.e., ' ( )z f  , where ( )Ff P y . Then 

The following relation holds:  
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 '

1 2 3( ) (0)
vB C C

z t C C y M C f                                                                          (11) 

Where  ' '

1 2 1 1 1
: ( 1) , : :

( 1) ( 1)

q q
m

g g g g kk

b M b M
C M C l M

q q
      



 
       

    
  

2

3 1 2:
( 1) ( 1)

q qb b
C M M M M

q q

 
  

    
 

Proof.   In view of lemma 2.1, we have that 

' 1

0

1

0

'

0

ˆ ˆ( ) ( ) (0, ) ( , ) ( ) ( ) ( , )
( )

ˆ( ) ( ( ) ( )) ( )( ) ( )( )

ˆ ˆ ˆsup ( ) ( )
( 1)

k

v
v v

k

t
q

t t s s

k k k k

t

q

g g t t g s s k k kB B Bs J t

q

z t T t g g t y t s T t s Ag s y ds
q

T t I y Gf t f t

b M
M y y M y

q

b M






    

      

         



 

 

 

  

       


     

       
 









 

2

2

1 2

1 2 3

( 1) ( 1)

(0)
v

q

C C

B C C

b
f M M M f

q q

C C y M C f 

 
  

    

   

         (12) 

Theorem 2.1 Under the conditions (H1)-(H6), suppose that there exists a constant L>0 such that 

    1 2 3

1
(0) (0)

v vB C B

L

C C L M C h l L M    


    
                                       (13) 

Where the constants 1 2,C C and 3C are those given as in lemma 3.4. Then system Eq.(1)-Eq.(3) is 

controllable on the interval J. 

Proof.  Suppose that ( )y y  for some "

vy B  and 0 1  , then ( ), ( )Fy f f P y   . Using 

Lemma 3.4 and no decreasing property of function ( )  , we can easily yield that 

 

    
1 2 3

1 2 3

(0)

(0) (0)

v

v v

C B C C

B C C B

y C C y M C f

C C y M C h l L M

 

    

   

     
 

If we take  ": ,v C
V y B y L   , then from inequality (11), we have that ( )y y  , for any 

y V And 0 1  , and moreover using lemmas 2.2, 3.2 and 3.3, the proof is completed. 
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