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Abstract. In view of band-limited seismic data with a low dominant frequency and short data 

records, this paper proposes a new approach to the seismic blind deconvolution problem, a new 

criterion for blind deconvolution is constructed, by which we can measure the independency of 

output signals. The optimization program for new criterion of blind deconvolution is performed by 

applying Neidell’s wavelet model to the inverse filter, which then makes the optimization program 

for multivariate reduce to univariate case. The proposed method can broaden the spectrum of 

seismic data effectively resulting in the improved resolution even in the case of band-limited 

seismic data with a low dominant frequency and short data records. The simulation test and actual 

seismic data processing results show that the correctness of the method. 

Introduction 

In seismic exploration, a recorded seismic trace is often represented as the result of a superposition 

of wavelets of constant shape weighted by the reflectivity series, thus it can be modeled as a 

convolution between the source signature and the reflectivity series. Deconvolution is an important 

process by which the reflectivity series can be estimated from the recorded trace, vertical resolution 

of the seismic image will be enhanced[1,2]. As the reflectivity series, the wavelet are unknown, 

only seismic trace is accessible, we have the classical blind deconvolution problem. Statistical 

deconvolution appears to be one of powerful tool for dealing with practical situation. Many blind 

deconvolution techniques, under various assumptions about the seismic wavelet and reflectivity 

series, have been developed with respect to different criteria in recent decades[3,4,5,6,7,8]. Anthony 

Larue[9] propose a new blind single-input single-output deconvolution method based on the 

minimization of the mutual information rate of the deconvolved output. To take the band limited 

nature of seismic wavelets and the presence of noise into account, Baan and Pham[10] present a 

modification of the mutual-information rate, whitening the deconvolution output only within the 

wavelet pass band, to prevent noise amplification, Wiener filtering is introduced. 

In the above entropy-based approaches, one key point is to estimate the probability density 

function of the deconvolution output, however, estimating the PDF by nonparametric method needs 

certain length of the data to provide a good estimation. A seismic signal is treated to be stationary 

just within a limited time window due to intrinsic attenuation of the earth medium, thus these 

entropy-based approaches seem to result in a limited performance in the case of short data records. 

In statistics theory, the mutual information is the one of measures to show the dependence 

between two continuous random variables. Based on Scarsini’s work [11], we can see that 

concordance, as measures of dependence between two continuous random variables X and Y, is a 

useful tool when dealing with blind deconvolution problem. The overall intention of this article is to 

construct a new criterion based on the concordance for seismic deconvolution, and We apply the 

wavelet model derived by N. S. Neidell to designing the inverse filter this wavelet model has two 

shape parameters. If we know the dominant frequency of the wavelet, only one parameter is left, 

which means the optimization program for multivariate reduces to univariate case without setting 

initialization and adding constraint to inverse filter. 
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Methodology 

Concordance and Measures of Concordance. Two observations  11,YX and  22 ,YX  from a pair of 

continuous random variables are concordant, if
21 XX  and 

21 YY  , or 
21 XX   and 

21 YY  ; and they are 

discordant, if 
21 XX  and 

21 YY  , or 
21 XX   and 

21 YY  . Scarsini introduced a set of axioms for 

measures of concordance for pairs of random variables, which are invariant under as. increasing 

transformations of the random variables. When dealing with blind deconvolution problem, the 

following theorem of Scarsini may be considered. 
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Where 
XYC is the copula of the real random variables  YX , .This theorem gives us a new way for 

constructing the new optimal criterion to deal with blind deconvolution problem. 

On the Inverse Filter. Following the work by Baan and Pham, we can show that if the wavelet 

is known, Wiener filter achieves an optimum solution for inverse filter, since it makes a 

compromise between signal recovery and noise reduction. In the frequency domain, it can be 

written as 

 
 

  22








W

W
Aopt

                                                          (2) 

Where  W  is the wavelet, the superscript of the numerator denotes the complex conjugate, 

2 is a normal factor. 

In the blind deconvolution context, the wavelet is unknown, and need to be estimated, therefore, 

we adopt N. S. Neidell’s wavelet model to constructing inverse filter[12], which is derived from 

practical observation, and its z transform has the form.  

      0,011  mnZZZW
mn

N                                                (3) 

Furthermore, if we denote the peak frequency of the amplitude spectrum of this wavelet as p , 

the relationship between the n and m is 

nm

nm
p




cos

                                                               (4) 

So, if we know the peak frequency of the amplitude spectrum of real wavelet, only one 

parameter needs to be determined, in practice, usually we do not know this peak frequency; we have 

following value as a substitution for p  

 np xFTmaxargˆ


 
                                                            (5) 

Where FT denotes Fourier transform. 

New Deconvolution Algorithm 

Based on the above results, we construct a new frequency domain criterion corresponding to the 

inverse filter A for blind deconvolution. First, for the stationary seismic signal nx , each sample of 

the trace has the same distribution functions, empirical distribution function can be applied to 
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calculate the Cumulative distribution function nu corresponding to the sample nx  
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Where  A1  is the indicator function of event A, N is the length of the data. Then the new 

criterion can be given as  
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l denotes the time delay . After determining the
p , J is just the function of n or m, so we have 
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Thus our new deconvolution algorithm consists of the following steps: 

 Estimate p  of the seismic data  nx . 

  Compute the output  n

nu of the inverse filter with the different parameter n, in which the 

superscript n denotes the shape parameter of the inverse filter; 
nu is given by Eq.6, and the 

inverse filter is given by Eq.2 and Eq.3. 

  For a suitable l , compute the cost function J corresponding to the shape parameter n of the 

inverse filter. 

  Where we let equal. x . 

  Search the minimum of the cost function to get the optimum inverse filter. 

Example  

Simulation Experiments. We have simulated the seismic trace by convolving a super-Gaussian 

reflectivity with a 40 Hz Ricker wavelet. The reflectivity is generated as 3( )b n , where ( )b n are 

independent normal random variables with zero mean and variance 0.08. The sample interval of the 

synthetic trace is 1 ms.  

 

 

Figure 1.  The results of deconvolution 

in the noise-free case. 
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Figure 2.  The results of 

deconvolution for a noisy synthetic 

trace. 
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In order to assess the performance of our method for the data with small samples, we set the 

length of the synthetic trace about 200 ms. The estimation results are plotted in Fig. 1. As shown in 

the figures, the wavelet (blue line) is very precise estimated. The original spectrum (red) ranges 0 

Hz to 100 Hz, and the deconvolved spectrum (blue) range is 0 Hz to 200 Hz. The spectrum of the 

deconvolved trace is obviously broadened. 

To test our algorithm for noisy signals, we employed a noisy synthetic trace. The signal-to-noise 

ratio of the noisy data is 15 dB. The results are shown in Fig. 2. The wavelet (blue line) is well 

estimated. The original spectrum (blue) ranges 0 Hz to 80 Hz, and the deconvolved spectrum (red) 

range is 0 Hz to 100Hz. The spectrum of the deconvolved trace is definite broadened. Meanwhile, 

the result of the deconvolved trace shows the higher signal-to-noise ratio, which demonstrates an 

anti-noise feature of our method.   

Actual Data. We applied our method to a real onshore single seismic data, which was obtained 

from the Ordos Basin, China. As shown in Fig. 3, the resolution of the deconvolved seismic trace is 

clearly improved. The original spectrum (blue line) ranges 0 Hz to 120 Hz, and the deconvolved 

spectrum (red line) ranges 0 Hz to 180Hz. In contrast with the spectrum of the original trace, the 

spectrum of the deconvolved trace is obviously broadened in Fig. 4. 

 

 
 

An offshore stacked section is to assess the potential of applying our method. The stacked section 

was obtained from China. There are 50 traces in this seismic section. The sampling interval of data 

is 1 ms. Fig. 5 displays the offshore data and result after deconvolution using our method. The 

resolution of the deconvolved section is clearly improved.  

Figure 4.  The comparison in the amplitude 

spectrum before and after deconvolution 
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Figure 3.  The comparison in the 

waveform before and after processing 
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Summary 

A new blind deconvolution algorithm is proposed in this paper, whicn is based on the independence 

measurement of the random variables. The new algorithm can adopt the maximization criterion of 

independence to finish the deconvolution processing of the signal in a relatively short data records. 

Furthermore, Both the simulation calculation and the actual data processing have confirmed the 

correctness of the theory. In the practical application, the theory can be used in the non-stationary 

seismic signals processing, which can obtain a good effect. 
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