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Abstract—Tight time coupling will require the high modeling 
performance, especially the minimum on/off time constraint. The 
authors referred to the thought of the cutting plane theory, and 
built 4 kinds of models ABCD of the minimum on/off time 
constraints, to completely demonstrate the problem. Then they 
gave 3 kinds of optimal modeling criterial, the solution accuracy, 
the node numbers and the peak memory. They clarified 
mathematically the model C was the optimal to reduce the time 
couplings of coefficient matrix. Finally, IEEE118 case was used to 
validate the efficiency of the model and the criterial. With the 
characters of inequality to adjust the constraints, the guide 
method could be applied in other fields. 

Keywords-time coupling constraints; unit commitment; cutting 
plane; optimal modeling criterion 

I. INTRODUCTION 

Unit commitment (UC) does research on determining the 
on/off states and powers of choosing units to satisfy the 
optimal objective during different time scales [2]. Actually it 
is a kind of the problem of mixed integer programming 
(MIP). UC problem is always being the hot spot for the 
advantage of economics and energy-saving in electrical 
automatic field. 

The matrix dimension of UC problem grows up 
exponentially with the time periods. It makes the key point 
that how to build the most proper time coupling constraints, 
especially the minimum on/off time constraints, in the large 
time scale of UC. The branch and cut (B&C) is one of the 
most popular methods in the main business software[3], and 
also the excellent model will improve the efficiency of B&C. 
Nowadays there are several papers relative to the time 
coupling constraints modeling and analyzing in and out. The 
3-binary states model in [4] was presented  as the 
programming comparison, furthermore [5]imposed the 
modified 3-binarymodel， coupling the startup state and 
running state. However they were neither compared with 
other models. The 1-binary model formulated in [6]could 
reduce the number of integer variables and time constraints, 
and it was proved to have better quality than the 
3-binarymodel [5]in saving the programming time and 
objective costs. But another case in [7]demonstrated the 
model of [5] was superior to [6]in node numbers. It needs 
some convincing optimal criteria. Also in [8], some optimal 
criteria which were summarized, nerveless it was lacked in 
systematic analysis. On the other hand, the application of 
cutting plane theory usually lied in the algorithm, rather than 
the guide for modeling procedure. 

The objective of this paper is to establish the whole 

model systems of minimum on/off time constraints of the 
thermal unit commitment problem, hereinafter to choose the 
best model by the solution, the time and the space analysis. 
This paper refers the valid inequality and cutting plane, 
according to the actual scene, and models the minimum 
on/off time constraints. Meanwhile, with the characters of 
inequality to adjust the constraints, the guide method could 
be applied in other fields. 

II. CUTTING PLANES THEORY 

Considering the MIP problem 

 T
*min | , N +Rn r c x Ax b x



where x is a n r dimension column vector, 
representing n dimension nature vector and rdimension 
non-zero real vector, c is the correlative column vector in 
objective function. A is a ( )k n r  dimension  matrix，

b presents k dimension resource column vector, where k is 
the order of maximal linear independent group.  

The corresponding relaxing linear problem 

 T
* *min | , R +Rn r c x Ax b x



The convex set of the relaxing linear problem 


 +

R *P | , R n r  x Ax b x


The convex set of the MIP problem 

 R *P P N +Rn r I


Definition1 [9]The inequality 
T ba x is a valid 

inequality if 
T ba x for all Px . 

According to Def.1，all inequalities in the constraints set 
of MIP are valid inequalities. 

Definition2 [9]The valid inequality
T ba x is a cutting 

plane if
T ba x for

 T
R RP | Pb x a xI

. 

In other words, a cutting plane is a valid inequality which 
could just delete the wrong relaxing solutions from set PR, 
doing nothing for feasible solutions in set P. The two 
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characteristics above are not only the essence of cutting 
planes, but also the basis of large-scale linear programming 
order reduction algorithm and linear programming relaxation 
technique [10].When using this method to solve the problem 
of MIP, as long as the linear relaxation solution doesn't 

meet *
N Rn r ,a cutting plane will be added. And then the 

new problem will be solve once again. It repeat the same 
process until meet the demand. 

Experience shows that in in practical use of B&C method, 
some preprocessing for the constraint set could improve the 
efficiency of computation [11]. Because the compact 
constraint set maydirectly make up the cutting plane, and 
especially if it is a convex cutting plane, the initial boundary 
could be much tighter. The boundary in this article is similar 
with the polyhedral theory in [8].The key variablesare binary 
in the UC problem of power system, which represent the 
states of the units. Due to what after the relaxation binary 
variables are just within the range of [0, 1], and it is good for 
the formation of initial cutting plane. Considering 
magnification and shrinking of inequalities, we can easily get 
the most compact constraints, and it can be proved extremely 
easily theoretically. 

III. TIME COUPLING CONSTRAINTS MODELING 

The optimization objective of UC is usually the total cost of 
system or the lowest fuel consumption, the constraint 

conditions including system power balancing, reserve 
constraints, generation limits and ramping constraints, 
minimum on and off time constraints, etc. [11]. 

The UC model of MIP can be expressed by the symbolic 
form below. 

 T
*min | ( ) , N +Rn r  c x Ax b x



This paper is focused on minimum on/off time constraints. 
In accordance with the time in a different direction, 
minimum on/off time constraints modeling method has been 
divided into the forward mode [5, 8], the backward mode [4, 
6] and the bilateral mode [8, 9].According to the number of 
state variables of units, there are two kinds of modeling ideas, 
that the 1-binary mode[6,8, 9] and 3-binary [4, 5, 7] two 
kinds of modeling ideas.  

In the actual operation of power system, at the end of the 
optimization period, generally there is no need to meet at 
least one operation cycle or outage cycle, and the bilateral 
mode may be slow in converging, so only the backward 
mode is advisable. In the condition of being different in 
constrained variables and thresholds, this paper established 4 
kinds of models, covering all existing modeling methods, 
respectively named the ABCD, as shown in Fig. 1 below. o 
describe the unit operation of 3-binary, u is the unit running 
state, y is unit start-up state, z is the shut-down state. 
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FIGURE I. FOUR KINDS OF MINIMUM ON/OFF TIME CONSTRAINTS MODELS 

Mode A can be formulated as 

min{ 1, }
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Model A means that after the start-up (or 
shut-down),units must remain the on(or off)states for at 
least the minimum period. The unit states of a time period 
will be limited strictly by the first time segment. Among 

them, MUT  represents the minimum on time, MDT  

represents the minimum off time. Where iu  is the 

restricted variable, itu
is the bound variable. Start 

segment is qualified naturally. 
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Eq. 6 is obtained by linear superposition of Eq. 7. And 
according to the theory of linear programming, the linear 
superposition of the same directional valid inequality can 
increase feasible regions, even if rate increasing is not high. 
But Eq. 6 is obviously better than the Eq. 7. Compared to 
Eq. 7, the number of independent constraints Eq. 
6decreases at least by 50%, and the ideas of the essence of 
which is the combination of the initial cut and decoupling. 
Finally, the selected model A is Eq. 6.  

Mode B can be formulated as 

min{ 1, }
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Model B have the same constrained variables as model 
A, but the y and z threshold. The yz represent the 
difference of state, and in other words, model B is actually 
a set of first-order state inequality. By introducing linear 
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logic of constraint Eq. 9 of yz, the threshold variable of 
model B is bigger than the A. Considering the inequality 
direction, constrained variables are in enhanced limits, and 
the linear relaxation of the feasible region become smaller, 
but the MIP feasible region does not change. Therefore the 
valid inequalities of model B can be seen as the initial 
cutting plane. In theory, the effect of the model B is better 
than A. However it is also should be cautious that for the 
introduction of independent integer variables, the model B 
may show the optimal performance after a certain time 
period. 

( 1)

1

it i t it it

it it

u u y z

y z

  


  

For model C as Eq. 10, constrained variables are yz, 
and u is threshold. Model C has the different modeling 
routine, focused on the change of state variables, rather 
than state variables. Hence the amount of effective limited 
constraint is larger than model A or B, but limited variables 
in each constraint are better in quantity.  
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Model D can be formulated as 
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Model D is the often used as constraints of the form [4], 
and yz are both constrained and threshold. The amount of 
effective limited constraint is less, and also limited 
variables in each constraint are better. But the coupling 
degree of model D is higher than all models above. 

IV. NUMERICAL RESULTS 

The proposed formulation has been applied to solve the 
IEEE118 data case[4]. All models have been implemented 
on a Lenovo Desktop with Corei5-4590 @ 3.30 GHz and 8 
GB of RAM memory using CPLEX 12.6. In this case study, 
the execution tolerance of CPLEX was within 1% of the 
optimal solution. 

The test models were named ABCD, and the 
optimization cycle is 24*1 h, expanding different time 
scale to contrast the model performance. Compared events 
included the characteristics of the solution (objective 
values, gap), time performance (computing time, number 
of nodes), and space performance(peak memory).The 
initial states of thermal units are fully on and the initial 
power is the minimum output. The system reserve under 
highest load remains 22.5%. 

TABLE I. THE COMPARE OF DIFFERENT MODELS  TABLE II. THE OPTIMAL RESULTS OF DIFFERENT MODELS 

Period/h 
Generation cost higher proportion (%) 

Period/h 
Optimal power generation costs (k$) 

A B C D A B C D 

24 0.27% 0.26% 0% 0.26% 24 1351.74 1351.66 1348.15 1351.66 

48 0.25% 0.78% 0% 0.27% 48 2702.05 2716.28 2695.23 2702.63 

72 0.43% 0.60% 0% 0.22% 72 4059.56 4066.73 4042.31 4051.33 

120 0.19% 0.75% 0% 0.18% 120 6749.06 6787.33 6736.47 6748.45 

168 0.23% 0.24% 0% 0.17% 168 9452.74 9453.55 9430.63 9447.05 

360 0.31% 0.26% 0% 0.17% 360 20268.92 20260.38 20207.26 20242.32 

720 0.30% 0.15% 0% 0.17% 720 40536.70 40475.45 40413.46 40481.15 

The correctness of the objective value is most 
important. Based on the minimum cost value of every time 
period, the objective values of different models are much 
closer, among which the highest proportion is 0.78%, as 
shown in Table 1.With the period expanding, objective 
costs almost grow linearly, as shown in Table 2. In 
conclusion, each model almost has the similar objective 
value. 

Then the accuracy of various models will be analyzed. 
Gap is the gap percent between linear relaxed solution and 
the optimal solution, as well as the convergence criterion. 
Because UC problem is NP-hard problem, and it is almost 
impossible to get the real optimal solution. So the Gap 
becomes the direct indicator of the precision in the solution. 
The Gap of each model is shown in Fig.2.Under the same 
convergence, Gap of model C is the most stable one, 
always staying below 0.01%. The second is the model D, 

below 0.1%.Model A and B are inferior to CD, which 
means the initial cutting of the state change is better than 
simple status. Model A has been fluctuant in some top 
periods, while later it becomes smooth. For the similar 
modeling idea, model B is the same. However in the long 
period of time, model B is more advantageous to model A. 
In conclusion, the model C has the most solution 
characteristics among 4 kinds of models above, namely 
optimal feasible domain. 

178



 
FIGURE II. THE GAP OF DIFFERENT MODELS 

 
FIGURE III. THE COMPUTING TIME OF DIFFERENT MODELS 

 
FIGURE IV. THE PEAK MEMORY OF DIFFERENT MODELS 

Computing time is one of the most important indicators 
of UC. There is a positive correlation between computing 
time and the time scale. If entering into the branch 
procedure, there is a positive correlation between 
computing time and the number of effective branch nodes. 
Whether entering into the branch or not depends on the 
initial upper bound, and the convergence precision, but it 
can be increased by improving the initial cut to decrease 

the invalid branch probability, especially improving the 
root node. Under the convergence of 1%, the model B, C, 
and D have not been in branch, while the model A has 56 
and 110 nodes respectively in the period of72h and 120h, 
which results in computing time significantly enlarging. 
According to Fig. 3, the computing time of model C is the 
least, and it effectively reduces the dimension of the 
problem. Although model D also reduces the dimension 
problem, it strengthens coupling degree. Model A appears 
worst on time performance. At any time extension, model 
C’s computing time grows upstably, nevertheless the 
model B and D rise fast, and model A fluctuates highly. 
Consequently, the best choice of the modeling should be 
the model C. 

The peak memory is the representative index of space 
performance. The peak memory can reflect not only the 
model scale, but the peak memory used in model solving. 
As shown in Fig. 4, the peak memory of model C is 
considerably lower than the others. Also the peak of model 
A is less, because it has the least number of independent 
variables. 

In consideration comprehensively of correctness, 
accuracy, time performance and space performance, model 
C should be the chose none. The advantage of model A is 
the small size of upper bound, but further dimension 
reduction is on low likelihood, which let alone the poor 
computing stability. Model B is in the middle position. 
Model D has one of the biggest scales, but the accuracy is 
second only to model C, so it can be used as a Plan B. 

V. SUMMARY 

The paper has referred to the ideas of the cutting plane, 
analyzing inequality variables of both sides to construct the 
initial cutting plane, and put forward 3 criteria to evaluate 
the initial cutting: the accuracy of the solution evaluating 
the refinement of feasible region, the efficiency node 
numbers evaluating the reduction of coefficient matrix 
dimension, and the peak memory usage evaluating the size 
of models. Under the actual operation, there are 4 classes 
to model the minimum on/off time constraints. Then the 
optimal model has been selected mathematically in theory. 
At last, numerical results have revealed the accurate and 
computationally efficient performance of the formulation. 

The actual operation of power system is extraordinarily 
complicated, and it is necessary to test the model under 
changeable conditions. The degree of coupling still needs 
further research, such as analyzing the single correlation of 
coefficient matrix, the quantitative relationship between 
size limit and model performance, and so on. 
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