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Abstract—This study introduces the principles and application 
procedures of the stiffness multiplier method used to correct the 
statistical energy analysis (SEA) subsystem attributes. Using the 
cockpit floor of a certain type of fighter aircraft as an example, 
this study combines the finite element method and stiffness 
multiplier correction technique to modify the modal density of 
the SEA model through theoretical derivation and numerical 
simulation analysis. Results of the numerical simulation show 
that the SEA subsystem modified with the stiffness multiplier 
method can perfectly reflect the dynamic characteristics of 
complex stiffened plates. Moreover, the results of the calculation 
are identical to those obtained with the finite element method. 
The stiffness multiplier method is found to be applicable to the 
construction of the complex structures of the SEA subsystem 
model. 

Keywords-SEA system correction; stiffness multiplier; modal 
number; radiation efficiency. 

I. INTRODUCTION 
As an effective prediction technique for medium-high 

frequency responses, statistical energy analysis (SEA) is 
widely used in the aerospace and auto industry[1-3]. SEA 
divides complex systems into different modal groups. In cases 
of statistical significance, SEA disassembles large systems into 
several independent subsystems that are easy to analyze instead 
of precisely determining each modal response. In the initial 
engineering design stage of SEA applications, the subsystems 
constituted by modal groups must be defined. The SEA model 
established in this way can clearly express the characteristics of 
input, storage, loss, and transmission of vibration energy. The 
attribute parameters of subsystems can also be calculated 
accurately to achieve precise dynamic prediction results. 
However, substructures in practical applications often have 
complex geometrical and physical properties, and no related 
attribute parameter is available for reference[4]. Moreover, 
experiments for testing the attribute parameters of substructures 
are often time consuming and are thus not widely used in 
engineering practice. This limitation emphasizes the need to 
develop a fast and effective method that could predict the 
attribute parameters of subsystems with complex structures. 

In predicting the attribute parameters of subsystems with 
complex structures, dynamic response (frequency and space 
average) is usually controlled by a series of “total attributes” 
even when structures are extremely complex from the physical 
aspect[5]. The energy storage capacity of structures is 
controlled by the frequency band within the localized mode, 

whereas the energy transfer is determined by local attributes 
near the structural connection (such as local impedance at the 
structural connection position, transfer loss, and radiation 
efficiency to the shell structure and acoustic coupling). 
Therefore, with SEA structures having the same energy storage 
capacity and transmission properties, accurate SEA subsystems 
can be established to represent complex structures. This 
approach establishes a simplified SEA model for complex 
structures and guarantees accuracy and computational 
efficiency (main physical parameters that affect structural 
response). 

Over the past decades, several studies have focused on 
estimating the parameters of SEA subsystems. V. Cotoni and R. 
Langley estimated the SEA parameters of a periodic structure 
and presented an analysis theory for periodic structure 
vibration [6]. Taner Onsay and Anab Akanda et al. developed 
an estimation method for SEA parameters based on equivalent 
stiffness [7] and adopted fine finite elements to estimate modal 
density so as to achieve equivalence in stiffness with a 
“stiffness multiplier.” B. R. Mace and P. J. Shorter  adopted 
the method of energy finite elements to study the coupling 
relationship between subsystems[8]. On the basis of the work 
of Taner Onsay and Anab Akanda et al., the present study 
analyzes the correction of SEA attributes with the stiffness 
multiplier method and conducts numerical verification using 
practical structures. 

II. SEA CORRECTION BASED ON STIFFNESS MULTIPLIER 
The main theory of the SEA method is based on the power 

flow balance equation, with which the energy flow relationship 
among subsystems can be solved[9]. The power balance 
relationship among N  subsystems is 
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where ω  is the mid-band frequency, kη  is the damping 
loss factor (DLF) of the subsystem, kiη  is the coupling loss 
factor (CLF) among subsystems, n  is the modal density, and 
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P  is the input power of the subsystem load.  

For increasingly complex structures, their DLF values can 
be tested with the method of steady energy flow[10]. The key 
to this method is to measure the input power inP  of the 
excitation source in the system and the system energy E . 
The input power of the subsystem is 
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The energy of the subsystem can be expressed as 

2 ( )E M v t=             (3) 

where ( )fvS ω  is the cross-spectrum density of the bilateral 
force ( )f t  and speed ( )v t  at the excitation point and 

( )fvG ω  is the unilateral cross-spectrum density. According to 
the definition of the DLF, we can obtain the following from 
Formulas (2) and (3): 

inP
E

η
ω

=                (4) 

As for a three-dimensional space with volume V , 
superficial area A , and total side length l , the formula of its 
modal density is 
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For the uniform rectangle plate, the modal density 
formula of the flexural vibration is  

 ( )
2
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where PA  is the area of the plate, R  is the turning radius 
of the section, lc  is the longitudinal wave velocity in the 

material, and /lc E ρ= , where E  denotes the elasticity 
modulus and ρ  denotes the mass density.  

The radiation efficiency of the two-dimensional plate is  
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In Formula (7), radP  is the radiated sound power, and 
2

nv  is the mean square velocity on the plate surface. Here, 

both the radiated sound power and the mean square velocity 
can be calculated with the finite element model and 
experimental measurement. 

As for plates with special structures, such as stiffened 
plates, their modal densities cannot be calculated with the 
formula for uniform flat structures. Such calculation would 
result in large errors and necessitate extensive corrections. 
If a complex plate structure is substituted with a simple 
two-dimensional plate structure, then the calculation is 
simplified. The equivalent bending stiffness of a stiffened 
plate is defined as eqB , and that of an ordinary plate is B . 
The ratio of the equivalent bending stiffness of the stiffened 
plate to that of an ordinary two-dimensional flat plate is 
defined as the stiffness multiplier α , which is written as 
follows: 
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where ( )n ω  is the modal density of the structure, B  is 
the bending stiffness of the plate, υ  is the Poisson’s ratio of 
material, and h  is the thickness of the plate. The elasticity 
modulus of a stiffened plate structure for SEA can be 
determined by multiplying the elasticity modulus of 
two-dimensional flat materials with a stiffness multiplier. The 
equivalent stiffness can then be corrected. 

III. EXAMPLE OF NUMERICAL SIMULATION ANALYSIS 

A. Model of Cockpit floor of Fighter Aircraft 
We establish a cockpit floor of a fighter aircraft as Figure I 

shows. The spatial distribution of the stiffeners on the base 
plate is extremely complicated, their thickness is not uniform, 
and a corresponding subsystem based on standard SEA 
subsystems is lacking. In this example, we use the stiffness 
multiplier method to determine the equivalent SEA subsystem 
for the base plate. 

 
FIGURE I.  COCKPIT FLOOR OF FIGHTER AIRCRAFT 
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We combine the finite element method with the stiffness 
multiplier to modify the modal density. First, a detailed finite 
element model of the stiffened plate substructure must be 
established. Then, the calculation is conducted, including the 
calculation of the modal number within the frequency band, 
inherent frequency, and mode shape of the finite element 
subsystem. Subsequently, the equivalent SEA subsystem is 
established. At this point, a standard SEA subsystem is 
defined, and the modal number within the frequency band of 
the defined standard SEA subsystem is obtained with the VA 
One software. Then, the ratio of the modal number within the 
frequency band of the standard SEA subsystem and that of the 
finite element subsystem are defined as the stiffness 
multipliers. The material attributes of the SEA subsystem are 
modified, and the equivalent SEA subsystem is finally 
established. For acoustic problems, the radiation efficiency 
and transfer loss of the SEA subsystem can be used to (a) 
calculate the radiation efficiency of the SEA subsystem after 
correcting material attributes and (b) determine the radiation 
efficiency from the calculation of the finite element subsystem. 
Consequently, the CLF of the equivalent SEA subsystem can 
be modified. 

The finite element subsystem model of the floor can be 
created with the VA One software, as shown in Figure II. The 
finite element subsystem model comprises 591 nodes and 584 
units (including shell and beam elements). The sound fields on 
both sides of the subsystem are created with the SIF function 
of the VA One SEA software. The attributes of the structure 
are simplified to uniform material, thickness, and stiffened 
section characteristics (which are similar to those of the base 
plate materials on the floor). The thickness of the plate is 
0.0015 m, the material density is 2757 kg/m3, the elasticity 
modulus 70GPa, and the Poisson’s ratio is 0.3. The moment of 
inertia of an area of the beam sections are Ixx 8.004e-8 m4, 
Iyy 4.169e-008 m4, Jzz 1.273e-007 m4, and Qzz 3.726e-010 
m4, the area is 0.000272 m2, and the perimeter is 0.256 m. 

 

FIGURE II.  MODEL OF THE VAONE SUBSYSTEM. 

The material and thickness of the non-stiffened SEA plate 
subsystem (uniformed SEA) created with the VA One 
software are identical to those of the finite element subsystem. 
The sound fields on both sides of the plate subsystem are 
created with the SIF function as well. The analysis frequency 
domain is set at 1/3 OCT and 125–1,250 Hz. The VA One 
built-in finite element solver is adopted to calculate the modal 
number of the frequency bands of the finite element, which 
should then be compared with that of the uniformed SEA 
subsystem, as shown in Figure Ш (A). Subsequently, the 
stiffness multipliers related to the frequencies can be obtained 
with Formula (1), as shown in Figure Ш (B). Finally, the 

mean of the stiffness multipliers related to the frequencies is 
used to modify the stiffness multiplier of the SEA subsystem. 

 

(A) 

 
(B) 

FIGURE III.  (A) MODAL NUMBER OF FREQUENCY BANDS 
AND COMPARISON BETWEEN FINITE ELEMENTS AND SEA; (B) 

MEANS OF STIFFNESS MULTIPLIERS AND FREQUENCY CHANGES 
AND DOMAINS 

The average stiffness multiplier is applied to modify the 
uniformed SEA subsystem and finally obtain the updated SEA. 
The subsystem model is then created with VA One (Figure II). 

B. Comparative analysis of results 
The equations are an exception to the prescribed 

specifications of this template. You will need to determine 
whether or not your equation should be typed using either the 
Times New Roman or the Symbol font (please no other font). 
To create multileveled equations, it may be necessary to treat 
the equation as a graphic and insert it into the text after your 
paper is styled. 

Figure IV (A) shows 20 decoupling concentrated force 
excitations imposed on the finite element system and 4 corner 
points imposed with simple support restraints. Eighteen 
sensors are imposed uniformly on the finite element 
subsystem to obtain the dynamic response at the response 
position. The dynamic response, radiation efficiency, and 
radiation sound pressure level of the structure can be 
calculated with the hybrid finite element/SEA in the VA One 
software (Figure V). Equivalent excitations are imposed on 
two SEA subsystems (uniformed and updated SEA). The 
spatial average dynamic response, radiation efficiency, and 
radiation sound pressure level of the structure can then be 
obtained (Figure V). 
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(A) 

 
(B) 

FIGURE IV.  (A) MODAL PLING CONCENTRATED FORCE; (B) 
VIRTUAL SENSOR AT A RANDOM LOCATION 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

FIGURE V.   (A) SENSOR RESPONSE OF THE FINITE ELEMENT 
SUBSYSTEM; (B) COMPARISON OF THE MODAL NUMBERS OF THE 
FREQUENCY BANDS OF THE FINITE ELEMENT AND UPDATED SEA; 

(C) COMPARISON OF THE RADIATION EFFICIENCIES OF THE 
FINITE ELEMENT AND UPDATED SEA; (D) COMPARISON OF THE 
RADIATION SOUND PRESSURE LEVELS OF THE FINITE ELEMENT 

AND UPDATED SEA; AND (E) COMPARISON OF THE SPATIAL 
AVERAGE DYNAMIC RESPONSES OF THE FINITE ELEMENT AND 
UPDATED SEA (THE SPATIAL AVERAGE DYNAMIC RESPONSE OF 
THE FINITE ELEMENT CAN BE OBTAINED WITH THE DYNAMIC 

RESPONSES OF EACH SENSOR) 

Figure V indicates that the modal number of the updated 
SEA plate subsystem fits perfectly with that of the finite 
element subsystem. This result is a good reflection of the 
dynamic characteristics of the stiffened plate structure. The 
radiation efficiencies of these two subsystems are consistent. 
The low radiation efficiency at 1,000 Hz is caused by the 
compression of the plate structure. The difference in the 
radiation efficiencies at 150 Hz reflects the complex radiation 
characteristics at a coincidence frequency. Under this 
coincidence frequency, the SEA is mainly corrected with the 
stiffeners, irregular regions, or boundary radiations, which 
cannot fully reflect the characteristics of stiffeners. 

 
FIGURE VI.  RADIATION FREQUENCIES (EQUAL BANDWIDTH, 

5 HZ) 
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Figure VI shows the comparison of the equal bandwidth 
radiation efficiencies (bandwidth at 5 Hz) and indicates 
changes in the low frequency radiation efficiencies. The 
differences in the radiation efficiencies are reflected in the 
radiated sound pressures. The prediction of the radiation sound 
pressure level of the updated SEA plate subsystem is consistent 
with that of the finite element subsystem. The differences in the 
radiation frequencies at 150 Hz reach nearly 6 dB. The 
dynamic responses of the structure in Figure Ⅴ (e) show a 
good fit and an obvious correlation. The small difference can 
be eliminated through the well-distributed arrangement of 
sensors. 

IV. CONCLUSIONS 
This study introduces the principle and application of 

correcting the attributes of the SEA subsystem with the 
stiffness multiplier method. Taking the cockpit floor of a 
certain type of fighter aircraft as an example, the SEA 
subsystem of the floor (updated SEA subsystem) is created 
with the stiffness multiplier method. Numerical verification is 
conducted on the stiffness multiplier with the hybrid finite 
element/SEA method of the VA One software. Through the 
comparative analysis of the calculation results, the following 
conclusions can be drawn. First, the SEA subsystem corrected 
with the stiffness multiplier method can effectively reflect the 
dynamic characteristics of the complex stiffened plate. Second, 
the radiation noise and vibration response of the structure 
analyzed with the updated SEA subsystem fit well with those 
analyzed with the finite element method. Third, the stiffness 
multiplier method can be used to create a SEA subsystem, 
which is similar to a complex stiffened structure. In this study, 
the transmission loss of the updated SEA subsystem is not 
explored but will be studied in future research. 

ACKNOWLEDGMENT 
This work was financially supported by the National 

Natural Science Foundation of China (Grant .No. 11404205) 
and the Fundamental Research Funds for the Central 
Universities of Ministry of Education of China (Grant No. 
GK201402012). 

REFERENCES 
[1] X. Chen, D. Wang, Z. Ma, “Simulation on a car interior aerodynamic 

noise control based on statistical energy analysis”, Chin. J. Mech. Eng. 
vol.25, pp. 1016–1021, 2012. 

[2] Cristina Díaz-Cereceda, Jordi Poblet-Puig, “Antonio Rodríguez-Ferran 
Automatic subsystem identification in statistical energy analysis”, 
Mechanical Systems and Signal Processing. vol. 54-55, pp. 182–194, 
2015. 

[3] H. Yan, A. Parrett, W. Nack. “Statistical energy analysis loss by finite 
elements for middle frequency vibration”. Finite Elements in Analysis 
and Design. vol. 35,  pp.  297–304, 2000. 

[4] M. Kassem, C. Soize, L. Gagliardini, “Structural partitioning of complex 
structures in the medium-frequency range An application to an 
automotive vehicle”, J. Sound Vib, vol. 330, pp. 937–946, 2011. 

[5] R. Lyon, Statistical Energy Analysis of Dynamical Systems, MIT Press, 
Cambridge, Massachusetts, 1975. 

[6] V. Cotoni, R.S. Langley, P.J. Shorter, “A statistical energy analysis 
subsystem formulation using finite element and periodic structure 
theory” , J. Sound Vib, vol. 318, pp.1077-1108, 2008. 

[7] T. Onsay, A. Akanda, G. Goetchius, “Vibro-Acoustic behavior of 
bead-stiffened flat panels: FEA, SEA and experimental analysis”, Proc. 
SAE Noise and Vibration conference, 1999. 

[8] B. R. Mace, P. J. Shorter, Energy Flow Models From Finite Element 
Analysis. J. Sound Vib, vol. 233, pp. 369-389, 2000. 

[9] R.H. Lyon and R.G.DeJong, Theory and Application of Statistical 
Energy Analysis, Butterworth-Heinemann, Newton, 1995, pp. 130–170. 

[10] B. Mace, “Statistical energy analysis: coupling loss factors, indirect 
coupling and system modes”, J. Sound Vib, vol. 279, pp. 141–170, 2005. 

215




