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Abstract: In this paper, we introduce a general iterative algorithm and prove strong convergence 
theorems for a non-self k-strictly pseudo-contractive mappings in Hilbert spaces. Our results improve 
and extend the corresponding results announced by many others.  

Introduction and Preliminaries 
Let K be a nonempty subset of a Hilbert space H. Recall that a mapping :T K H→ is said to be a 
k-strictly pseudo-contractive if there exists a constant [ )0,1k ∈ such that 

2 2 2( ) ( )Tx Ty x y k I T x I T y− ≤ − + − − − for all ,x y K∈ .                                                            ( )1.1  

Note that the class of k-strictly pseudo-contractions includes strictly the class of nonexpansive mapping 
which are mappings T on K such that     

, , .Tx T y x y x y K− ≤ − ∀ ∈                                                                                                          ( )1.2  
That is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive.  

In 2002, Marino and Xu[1] introduced and considered the following iterative algorithm: 
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Theorem MX. Let H be a Hilbert space, K be a closed convex subset of H, :T K K→ be a 
nonexpansive mapping with ( )F T ≠ ∅ . Let A be a strong positive bounded linear operator on K with 
coefficient γ  and :f K K→  be a contraction with the contractive coefficient (0 1)α< < such that 
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< < . Let { }nx be a sequence in K generated by (1.3). Then, under the hypotheses 
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{ }nx converges strongly to a fixed point q of T, which is the unique solution of the following variational 
inequality related to the linear operator A: 

( ) , 0, ( ).A f q q p p F Tγ− − ≤ ∀ ∈  
In this paper, motivated by Marino and Xu, we introduce a general iterative and prove strong 

convergence theorems for k-strictly pseudo-contractive mappings in Hilbert spaces. Our results 
improve and extend the corresponding ones announced by many others. 

Throughout this paper, we use F (T) to denote the fixed point set of the mapping T and KP to 
denote the metric projection of a Hilbert space H onto a closed convex subset K of H. Recall that a 
self-mapping :f K K→ is a contraction on K if there exists a constant ( )0,1α ∈ such that 

, .( ) ( ) , x y Kf x f y x yα ∀ ∈− ≤ −                                                                                                    ( )1.4  
In order to prove our main results, we need the following definitions and lemmas. 
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Lemma 1.1[2] If T is a k-strictly pseudo-contraction on a closed convex subset of K of a real Hilbert 
space H, then the fixed point set F(T) is closed convex so that the projection ( )F TP is well defined. 
Lemma 1.2[2] Let H be a Hilbert space, K be a closed convex subset of H. Let :T K H→ be a k-strictly 
pseudo-contractive mapping with ( )F T ≠ ∅ .Then ( ) ( )KF P T F T= . 
Lemma 1.3[2] Let :T K H→ be a k-strictly pseudo-contraction. Define :S K H→ by 

(1 )Sx x Txλ λ= + −  for each x K∈ .Then, as [ ),1kλ ∈ , S is a nonexpansive mapping such that 
( ) ( )F S F T= . 

Lemma 1.4[3] Assume that { }nα is a sequence of nonnegative real numbers such that 

( )1 1 , 0.n nn n nα αγ δ+ ≤ − + ∀ ≥  where { }nγ is a sequence in ( )0,1 and { }nδ is a sequence such that 
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Lemma 1.5[4]. Let H be a real Hilbert space, the following inequality holds  
2 2 2 , , , .x y x y x y x y H+ ≤ + + ∀ ∈  

Main results 

Theorem2.1. Let K be a nonempty closed convex subset of a real Hilbert space H and :T K H→ be a 
k-strictly pseudo-contractive mapping with a common fixed point for some 0 1k≤ < . Let :f K K→ be 
a contraction with the contractive coefficient (0 1)α< < . Let{ }nx be a sequence in K generated in the 
following manner: 

1

1

,

( ) (1 ) , 1.n n n n K n

x K
x f x P Sx nα α+

∈

= + − ∀ ≥




 

where :S K H→ is a mapping defined by (1 )Sx x Txλ λ= + − .If the control sequence{ }nα satisfies the 

following conditions: (i) lim 0;nn α→∞ =  (ii)
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strongly to a fixed point q of T, which solves the following variational inequality:  
( ) , 0, ( ).f q q p q p F T− − ≤ ∀ ∈  

Proof. From Lemma1.3, we know that the mapping :S K H→ is a nonexpansive mapping and 
( ) ( )F S F T= , By our assumptions on T, we have ( )F T ≠ ∅ . By Lemma1.1, we see 

( ) ( )KF P S F S= ≠ ∅ . Since :KP H K→ is a nonexpansive mapping, we conclude that 
:KP S K K→ is also nonexpansive. Observing the condition (i), we may assume that 1nα < for all 1n ≥ . 

Taking a point ( )p F T∈ ,  
we obtain  

1 ( ( ) ) (1 )( )n n n n K nx p f x p P Sx pα α+ − = − + − −  

(1 ) ( )n K n n nP Sx p f x pα α≤ − − + −   

( )1 1 ( ) .n n nx p f p pα α α≤ − − − + −    

By simple inductions, we have 0
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max , , 1,
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p f p
x p x p n

α
 − 

− ≤ − ∀ ≥ − 
 

which yields that the sequence{ }nx is bounded. On the other hand, we have  

( )2 1 1 11 ( ) ( )n n n K n K n n n K nx x P Sx P Sx P Sxα α α+ + + +− = − − − −  
[ ]1 1 1( ( ) ( )) ( )( ) .n n n n n nf x f x f xα α α+ + ++ − + −  

which yields that 
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( )2 1 1 1 11 | |n n n n n n n K nx x x x P Sxα α α+ + + + +− ≤ − − + −  

1 1[ ]n n nx xα α+ ++ − 1( )n n nf x α α++ −  

( )1 1 1 1[1 1 ] | | ,n n n n nx x Mα α α α+ + +≤ − − − + −                                                          ( )2.1  

where 1M is an appropriate constant such that { }1
1

sup ( ) .K n n
n

M P Sx f x ∂
≥

≥ +  

Noticing the condition (i), (ii) and (iii) and apply Lemma (1.4) to (2.1),  
we have 1lim 0.n nn

x x+→∞
− =                                                                                                              ( )2.2                 

Notice that 1 1n K n n n n K nx P S x x x P Sx+ +− ≤ − + − 1 ( ) .n n n n K nx x f x P Sxα+≤ − + −  

It follows from the condition (i) and (2.2) that lim 0.n K nn
x P Sx

→∞
− =                                              ( )2.3  

Next we claim that lim sup ( ) , 0,n
n

f q q x q
→∞

− − ≤                                                                                  

( )2.4  
where 0lim t tq x→= with tx being the fixed point of the contraction ( ) (1 ) .Kx tf x t P Sx+ −a  
Then tx solves the fixed point equation ( ) (1 )t t K tx tf x t P Sx= + − . Thus we have 

( )( ) ( )( )1 .t n K t n t nx x t P Sx x t f x x− = − − + −  
It follows from the Lemma 1.5 that   

( ) ( ) ( )( ) 22 1t n K t n t nx x t P Sx x t f x x− = − − + −
  

( ) ( )221 2 ,K t n t n t nt P Sx x t f x x x x≤ − − + − −
 

( ) ( ) ( )221 2 2 ,t n n t t t nt t x x f t t f x x x x≤ − + − + + − − 2 , ,t n t nt x x x x+ − −               ( )2.5                             

where ( ) ( ) ( )2 0 .n t n n K n n K nf t x x x P Sx x P Sx n= − + − − → → ∞                                                   ( )2.6  
and 

2, .t n t n t nx x x x x x− − = −                                                                                                                        ( )2.7   

Combining ( )2.5 and ( )2.7 , we have  

( ) ( ) ( )222 , 2 2 ,t t t n t n n t n t nt x f x x x t t x x f t t x x x x− − ≤ − − + + − −      

                                        ( )22
t n nt x x f t≤ − +  

It follows that ( ) ( )2 1, .
2 2t t t n t n n
tx f x x x x x f t

t
− − ≤ − +                                                                ( )2.8  

Letting n → ∞ in ( )2.8 and noting ( )2.6 yields   

( ) 2limsup , ,
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n

tx f x x x M
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− − ≤
                                                                                           

( )2.9  

where 2 0M > is a constant such that 2
2 t nM x x≥ − for all ( )0,1t ∈ and 1n ≥ . Taking 0t → in ( )2.9 , we 

have ( )
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x f x x x
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On the other hand, we have 
   ( ) ( ) ( ), , ,n n n tf q q x q f q q x q f q q x x− − = − − − − −  

( ) ( ), ,n t t n tf q q x x f q x x x+ − − − − −  

( ) ( ) ( ), , , .t n t t t n t t t n tf q x x x f x x x x f x x x x+ − − − − − + − −  
It follows that  

( ) ( )limsup , limn t t n tnn
f q q x q f q q x q x q x x

→∞→∞
− − ≤ − − + − −  
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( )lim limsup , .t n t t t n tn n
q x x x f x x x xα

→∞ →∞
+ − − + − −  

Therefore, from( )2.10 , it follows that 
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Hence ( )2.4 holds. Now from the Lemma 1.5, we have 
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where 3M is an appropriate constant such that { }2
3 1supn nM x q≥≥ − .    
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Then we have ( )2
1 1 .n n n n nx q j x q j t+ − ≤ − − +                                                                               ( )2.13  

It follows from the conditions (i),(ii)and ( )2.4 that lim 0,nn
j
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Therefore, applying Lemma1.4 to ( )2.13 , we have nx q→ as n → ∞ . This completes the proof. 
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