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Abstract. A piecewise smooth model is proposed and called HSSSVM-CM for short in the hidden 
space. Mapping the training data to the hidden space with a hidden function, HSSSVM-CM divides the 
original data into several subclasses by C means; derives the smooth differentiable unconstrained model 
by utilizing the entropy function to approximate the plus function of the slack vector, and introduces 
linking rules to combine classification results of various subclasses. Simulations on benchmark data 
demonstrate that HSSSVM-CM maintains good classification accuracies, reduces the training time and 
hardly varies with kernel parameters. 

Introduction 
Support vector machine (SVM)[1] is developed as an prominent method for the small-sample data and 
has gained wide attention. However, the kernel must satisfy the rigorous Mercer condition; only the 
symmetric and positive definite function can be used as the kernel which of course rejects some usable 
functions, such as the compact support kernel function.  

Hidden space support vector machine (HSSVM) extends the set of usable kernels [2], which only 
requires the hidden function to be symmetry. Researches on HSSVM include constructing sparse or 
ensemble algorithms [3-4], applying it new area [5]. However, HSSVM needs to solve a constrained 
program and requires long training time for large scale data.  

Smooth support vector machine (SSVM) has mathematical properties such as strong convexity and 
infinitely often differentiability, which attracts many scholars to research from various aspects [6-8]. 
But they can not get rid of the restriction on kernel function to be positive definite. 

Inspired by the advantages of HSSVM and smoothing techniques [9-10], this paper presents a new 
smooth model called HSSSVM-CM in hidden space with C Means clustering. Firstly, the training data 
are mapped into the hidden space and then partitioned into several subclasses by CM. Secondly; a 
smooth support vector machine model is derived by replacing the plus function with the entropy 
function of the slack vector. Finally, linking rules are proposed to combine classification results of all 
the subclasses. 

Introduction of Hidden Space 

Let 1=( , ) {( , )}l
i i iT X Y x y == , with 1{ } ( )l n

i i iX x x R== ∈  is the independently and identical distributed 
data and 1{ } ( {1, 1})l

i i iY y y== ∈ −  is the label.Define a vector ( )xϕ made up of a real valued function set 

1 2( ) [ ( ), ( ), , ( )]dx x x xϕ ϕ ϕ ϕ= L                                   
(1) 

The hidden space Ζ is defined as 
1 2{ | [ ( ), ( ), , ( )] , }T

dz z x x x x XΖ = = ∈Lϕ ϕ ϕ                                                                                             (2) 
Take the symmetric function ( , ) ( , )k x y k y x= as a special kind of hidden function, the kernel 

mapping becomes 

1 2[ ( , ), ( , ), , ( , )]
k

lx z k x x k x x k x x→ = L                                                                                                       (3) 
Accordingly, the hidden space can be expressed as follows based on any symmetric kernel with 

dimension l  
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1 2{ | [ ( , ), ( , ), , ( , )] , }T
lz z k x x k x x k x x x XΖ = = ∈L                                                                                    (4) 

Lemma 1 The distance between x and y  in the hidden space is computed as follows 
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( , ) || || [ ( , ) ( , )]
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H H t t
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d x y x y k x x k x y
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= − = −∑                                                                                             (5) 

Proof: The transformed formulation of x  and y are 1 2( ) [ ( , ), ( , ), , ( , )]lz x k x x k x x k x x= L and 

1 2( ) [ ( , ), ( , ), , ( , )]lz y k x y k x y k x y= L ，where ( , )k x y is the symmetric hidden function. 
The square of the distance between them is 
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L                                          (6) 

Thus, we complete the proof. 
The commonly used kernel functions includes positive SVM kernel, such as the Polynomial kernel, 

Gaussian radial basis kernel and Sigmoid kernel function, as well as the compact support kernel 
function. 

( , ) [( ) 1] ,T qk x y x y q N= + ∈                                                                                                                                      (7) 
2 2( , ) exp( || || / )k x y x y σ= − −                                                                                                                                        (8) 

1 2 1 2( , ) tanh( ), ,Tk x y p x y p p p R= ⋅ + ∈                                                                                                                      (9) 
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                                                                                                    (10) 

Smooth Support Vector Machine 

Let 1 2( , , , )l= Lξ ξ ξ ξ be the slack, and 10 C R< ∈ be the penalty parameter that makes compromise 
between the margin and the misclassified error. The training of smooth support vector machine (SSVM) 
equals the following program 

2 2
1

1min ( )
2

. . ( ) 1
0, 1, , .

lT
ii

T
i i i

i

w w b C

s t y w x b
i l

ξ

ξ

ξ

=
+ +

+ ≥ −

≥ = ⋅⋅⋅

∑
                                                                                                           (11) 

In equation (11), nw R∈  is the weight and 1b R∈ is the bias of the separating hyper plane 
( ) 0Tg x w x b= + =                                                                                                                                                     (12) 
Denote by 1 2=[ , , , ]lA x x xL the matrix form of the training data, and use the entropy function 

1( )= ln[1 exp( )]P x x xβ β β−+ + −                                                                                                         (13) 
to approximate the plus function of the slack vector 

max[ ( ),0] [ ( )]e D Aw be e D Aw beξ += − + = − +                                                            
where e is a column vector of ones, D is the diagonal matrix with ones or negative ones along the 
diagonal corresponding to the label of ix . The training of SSVM equals follows 

2 21min ( ) || [ ( )] ||
2

+ + − +Tw w b C P e D Aw beβ                                                                                   (14) 
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and Newton algorithm is proposed to figure out the optimal solution. For more detail, refer to [8]. 

Implementation of HSSSVM-CM 

HSSSVM-CM firstly maps the training data ( , )T X Y=  into the hidden space ( , )HT Y= Ζ , employs 
CM to divide Ζ  into c  disconnected regions 1{ }c

i i=Ζ , derives smooth models in each divided space, and 
finally uses linking rules to predict label of test data.  
  HSSSVM-CM consisits of three steps, mapping to the hidden space, smooth support vector machne 
training, and linking rules. The principle of  HSSSVM-CM is illustrated in Figure 1. 

 
Figure 1 Classification principle of HSSSVM-CM 

C Means Clustering 
C Means clustering is used to partion all the training data into several disconnected regions. Denote 

by 1{ }c
j jZ = the c (2 )c l≤ ≤  fuzzy subclasses, that represent Z ’s natural substructure satisfying 

1

c

j
j

Z Z
=

= U  and i jZ Z φ=I   ( )i j≠ . The training of CM equals the following 

2
1

1

min ( , )

. . 1, 1, 2, ,
k i

c
ij iji x X

c
iji

P U Z u d

s t u j n

= ∈

=

=

= ∀ =

∑ ∑
∑ L

                                                                                                       (15) 

Here, ( , )P U Z is the cost function, 1 2( , , , )cZ v v v= L is a vector of cluster centers, or called the 
prototype; ( ) ×= ij c lU u  is the membership matrix, where 0iju =  indicates that sample jx doesn’t belong 
to the cluster center iv , while 1iju = indicates that sample jx belongs to the cluster center iv ; ijd is the 
Euclidean distance between iv and jx . 

2( , ) || ||ij i jd d i j x v= = −                                                                                                                  (16) 
For the selected clustering centers, CM arranges the training data to its nearest cluster, then 

computes the center of the new cluster, and repeat the iteration until the objective function achieves its 
minimum.   
Linking rule 

For the resulted c decision functions, one for each subclass, how to make reasonable use of them is 
an important procedure to predict the label of any test data. 

Step 0 Initialization. Input the test data x and the obtained the hyper plane of each subclass. 
Step 1 Judgment. Use the following rule to judge the label  

1
( ) ( )

i

c

Z
i

y I x g x
=

= ∑                                                                                                                             (17) 

where ( )xg i is the decision function ( ) ( )Tg x sign w x b= +  and ( )
iZI x is the indicative function. 

1, ( )
( )

0, ( )i

i
Z

i

z x Z
I x

z x Z
∈

=  ∉
                                                                                                                     (18) 
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  The footnote of iZ is computed with 
arg(min )ji d=                                                                                                                                   (19) 

where  

2

1
|| || [ ( , ) ( , )]

l

j j H t t j
t

d x v k x x k x v
=

= − = −∑                                                                                          (20) 

and then classify the test data x to the i -th fuzzy group iZ and adopt the decision function.  
Complexity analysis 

For the l  training data, SVM, SSVM, HSSVM and SDWNSVM all train on the whole data; they 
have space complexity of 2( )O l . HSSSVM-CM divides the training data into c  regions, computes the 

solution on each individual subclass and combines their results. Suppose the number of samples is l
c

 in 

each subclass, HSSSVM-CM has a total space complexity of 2( )lO
c

. Since 2
2( ) ( )lO O l

c
<< . 

HSSSVM-CM has much lower space complexity than the aforementioned  algorithms. It is expected 
that HSSSVM-CM has low training time and is more sutiable for large scale data.  

Experiments and comparisons 
Effectiveness of MSSVM-CMis demonstrated on UCI datasets. All the experiments are carried out on 
a PC with P4 CPU, 3.06 GHz, 1GB Memory with pure MATALAB Language.  

Performances variances with the kernel width Breast Cancer is composed of 458 “benign” and 
241 “malignant” examples with nine attributes. Set 1C = for all algorithms, HSSSVM-CM  is 
compared with SVM, SSVM and HSSVM with Gaussian kernel. Fifty percent are randomly selected 
as the training set, leaving the others as the testing set. Performances are illustrated in table 1. 

 
Table 1 Accuracies with kernel width 

Kernel width SVM SSVM HSSV
M 

HSSSVM-C
M 

0.01=σ  66.76
% 

63.59
% 60.37% 93.26% 

0.2=σ  89.93
% 

86.33
% 84.29% 93.75% 

0.5=σ  93.22
% 

93.20
% 93.09% 96.33% 

0.8=σ  91.08
% 

91.71
% 90.30% 96.37% 

1=σ  89.81
% 

91.06
% 85.73% 93.96% 

 
   Based on the above table, we draw the following conclusions. 

HSSSVM-CM has the highest accuracies that is insensitive to kernel width, while SVM, SSVM and 
HSSVM have obvious variances with kernel width.   

Performances on moderate scale data Banana data consists of 400 training and 4900 testing data, 
two attributes for each sample. HSSSVM-CM  is compared with SSVM, HSSVM and SHSSVM,  
where the parameters are set 1C = , 0.5σ = and 0.1p = , “CS” and “RBF” are respectively the short for 
“compact support kernel function”and “Gaussian radial basis kernel function”, the accuracy is the 
averaged value of the accuracies on the training and testing set, the blank means that it cannot be 
computed. The performances are illustrated in table 2. 
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Table 2 Comparisons with various algorithms 
Algorithm Ker. Accuracies Time Iteration 

SSVM RBF 89.67% 2.59s 3.1 
CS \ \ \ 

HSSVM 
RBF 88.82% 14.66

s \ 

CS 90.71% 16.18
s \ 

SHSSVM RBF 89.81% 2.93s 3.2 
CS 90.92% 3.01s 3.1 

HSSSVM-C
M 

RBF 92.18% 1.21s 1.9 
CS 93.33% 1.16s 2.0 

 
The following conclusions are directly drawn from three aspects based on data in the above table. 
 (1) HSSSVM-CM has the highest accuracies, possesses the lowest training time under positive 

definite kernel and the symmetric kernel, and has the least iteration among the three smooth algorithms, 
SSVM, SHSSVM and HSSSVM-CM. 

 (2) HSSSVM-CM has higher training accuracies, lower time and identical iteration with RBF kernel 
than CS kernel.  

We also carry out the experient on Iris data. The results are illustrated in table 3, where the best 
results are emphasied in bold.  

 
Table3 Comparisons with various algorithms 

Algorithm Ker. Accuracies Time Iteration 

SSVM RBF 96.67% 0.46s 2.9 
CS \ \ \ 

HSSVM RBF 95.47% 2.62s \ 
CS 95.55% 2.67s \ 

SHSSVM RBF 96.81% 0.46s 3.2 
CS 97.13% 0.46s 2.9 

HSSSVM-C
M 

RBF 99.73% 0.21s 1.1 
CS 99.96% 0.17s 1.3 

It should be noted that the blank “ \’ means that it cannot be computed, since SSVM and HSSVM 
cannot use the non-positive definite kernel. It is obvious to see that, HSSSVM-CM has the highest 
accuracies, lowest trainig time and least iterations among the four algorithms. 

Conclusions 
HSSSVM-CM broadens the usable kernel functions, has short training time, high accuracies and good 
robustness. Future work includes producing new piecewise technique to partition the samples, 
exploiting new linking rules to combine results of subclasses or finding efficient ways to set optimal 
value of parameters.    
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