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Abstract. Two Lagrangian models are developed for the accurate simulation of advection-diffusion 
transport in unsteady open channel flows. The first one is based on a second-order partial differential 
equation (PDE) for pollutant concentration (model I), and the second one is a first-order system with 
diffusive flux as another primary variable (model II). To solve the two models, the meshless 
smoothed particle hydrodynamics (SPH) method is employed. To enforce the inlet and outlet 
boundary conditions, an extrapolation scheme based on cubic spline is used. Numerical results are 
presented for tracer distributions with boundary layer in a uniform flow and are compared with 
analytical solutions. It is demonstrated that both the two models can accurately solve the 
advection-diffusion transport problems, for which numerical diffusion and disperse oscillation are 
often observed in most Eulerian schemes. Therefore, the Lagrangian particle models are efficient and 
accurate tools to predict advection dominated transport for water quality in river systems and for 
transport with a boundary layer.  

Introduction 
Pollutant transport in open channels is one of the fundamental problems in environmental hydraulics. 
This problem is generally modeled by the well-known advection-diffusion equation, which also 
describes many other physical phenomena such as the heat conduction in the flow. These problems 
have the same mechanism that involves two processes of mass transport and molecular diffusion [1]. 

Apart from calibrating the diffusion coefficients in the equation via experimental data, another 
important topic is to solve the equation with robust numerical methods. To solve this kind of 
problems, many numerical methods have been proposed including FDMs [2], FVMs [3] and FEMs 
[2,3]. They are all Eulerian approaches based on meshes fixed in space, which gives rise to a number 
of difficulties when the transport is advection dominated. To minimize the numerical diffusion and 
instabilities in the sharp frontal regions, semi-Lagrangian methods are developed for weather 
prediction [4], in which operator splitting is often used, i.e. advection and diffusion are solved 
separately. Gross et al. [5] found that non-conservative semi-Lagrangian methods can decrease 
numerical diffusion and oscillations, but it still has problems in the vicinity of steep fronts. A full 
Lagrangian model with moving grid points of Devkota and Imberger [6] can remove the deficiencies 
occurred in both Eulerian and semi-Lagrangian approaches. However, its extension to 
high-dimensional problems is very difficult if it is not impossible, as it is still based on finite 
difference technique. In this paper, we aim at solving the pollutant transport problems using meshless 
smoothed particle hydrodynamics (SPH) method [7,8], of which the extension to high dimensions is 
straightforward. In addition, to avoid using standard SPH to approximate the second-order 
derivatives, a new Lagrangian pollutant transport model with diffusive flux is proposed. To enforce 
inlet and outlet boundary conditions, an extrapolation scheme based on cubic spline is developed. 

The rest of the paper is organized as follows. The governing equations, the SPH method and 
numerical boundary conditions are firstly described. To verify the proposed models, a benchmark 
problem for advection-diffusion with different Peclet numbers is then solved and compared with 
analytical solutions. Some discussion and concluding remarks are drawn at the end. 
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Lagrangian Particle Models 
Governing equations. The unsteady advection-diffusion equation governing the mass transport 

phenomenon in multi-dimensions reads  
                                                                                                               (1) 

where  is pollutant concentration,  is fluid velocity,  is time and  is diffusion coefficient, which 
may depend on the location or even the concentration itself. For simplicity, we assume it is a constant 
as often taken in practice. With the definition of material derivative , Eq. (1) can be 
transformed into the Lagrangian form as  

                                                                                                                                    (2) 
with the moving coordinate system 

                                                                                                                                           (3) 
If we introduce the diffusive flux , the second-order equation (2) can be transformed into 

a first-order system as 

                                                                                                                              (4) 

It is clear that all three equations (1), (2) and (4) are equivalent. In addition, after Lagrangian 
transformation, the original advection-diffusion equation (1) becomes a pure diffusion equation (2) or 
(4) on the moving coordinate (3). To avoid the aforementioned various numerical difficulties in 
solving the advection part, we aim at solving the advection-diffusion equation in Lagrangian form, i.e. 
either Eq. (2) or Eq. (4) together with (3), but not the original one Eq. (1) in Eulerian form. 

Smoothed Particle Hydrodynamics (SPH). In SPH method, continuous media are discretized 
into a finite number of N particles. Each particle  carries a mass , density , 
velocity , concentration and other properties depending on the specific problem. The particle 
mass  depends on the discretized medium's initial density distribution and the chosen 
volume partitioning  of the physical domain . In general, particles are initially distributed at 
Cartesian grid points with an equal distance . The volume of a particle can then be written 
as , where d denotes the spatial dimension number. During motion, a particle is allowed to 
change its density and volume, but its mass keeps constant. In this paper Eqs. (2) and (4) are solved 
using SPH. For details of standard SPH, the readers are referred to recent reviews by Monaghan [7,8] 
and the text book of Violeau [9]. 

Model I. The semi-discretization of Eq. (2), in standard SPH particle form, is 
                                                                                                 (5) 

where  is the kernel function,  denotes the Laplacian of the kernel 
taken with respect to the coordinates of particle , and is the smoothing length for particle   

Model II. The semi-discretization of Eq. (4) reads 

                                                                                            (6) 

where   is the kernel gradient. The cubic spline function [9] widely used in SPH is employed 
herein as the kernel.  

Particles are moved according to  
                                                                                                                                     (7) 

Boundary Condition. Although SPH has been successful in a broad range of applications, several 
stumbling problems need to be overcome, among which boundary condition implementation is a 
subtle but difficult issue. The logical difficulty is that SPH was invented to deal with astrophysical 
problems, for which an important task is to find the system boundary. However, in many practical 
applications, the influence of boundaries has to be taken into account. It is noted that there is no 
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reason to assume correct boundary conditions will be automatically implemented in SPH, as the 
physical boundary of a system domain does not coincide with the SPH interaction boundary. In this 
paper, the dummy particle method proposed by Takeda et al. [10] is used, in which some particles are 
located outside the system boundary but are included in the SPH interaction range. To specify 
accurate values for dummy particles, the cubic spline is used to extrapolate the boundary information.  

Numerical Results 
Together with (7), the semi-discrete SPH equations (5) and (6) are marched in time by the 

second-order predictor-corrector method. A sufficiently small time step is used to satisfy the CFL 
condition. For validation, the two models developed in Section 2 are used for solving the 
non-dimensionalized pollutant transport problem in one dimension  

                                                                                                      (8) 
with boundary conditions  
     and                                                                                                        (9) 
At steady state, it has the exact solution  

                                                                                                              (10) 
where  is the dimensionless Peclet number. The exact solution is used to evaluate the 
numerical behavior of the proposed models.  
     The simulation results together with exact solutions for two Peclet numbers with the two models 
are shown in Fig. 1 and Fig. 2, respectively. It is seen that although both of them give results 
comparable to exact solutions, Model II has better performance than Model I.  
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Fig. 1 Model I solutions for pollutant transport with different Peclet number. (a) Pe = 1 and (b) Pe = 10. 
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Fig. 2 Model II solutions for pollutant transport with different Peclet number. (a) Pe = 1 and (b) Pe = 10. 

 
To show the accuracy and convergence behavior of the two models, the convergence rate with 

exact boundary condition is shown in Fig. 3, which is about 1.6 for Model II and only 0.6 for Model I. 
This is consistent with the conclusion that standard SPH approximation for second-order derivatives 
had better not to be used due to the low accuracy [8, 9]. As shown in Figs. 1 and 2 for Pe =10 and Fig. 
4 for Pe = 100, neither of the two models shows numerical oscillations at the right-end boundary layer, 
which is a notorious phenomenon in mesh-based methods [2]. 

631



 

 

10-2 10-1

10-2

log (∆x)

lo
g 

(e
rro

r)

 

 
Model I
least squares fit E(∆x) = 0.17438*∆x 0̂.62979
Model II
least squares fit E(∆x) = 2.2857*∆x 1̂.5864

 
Fig. 3 Convergence rate of the Lagrangian particle models for pollutant transport. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

x

c

 

 

Pe = 100

Exact
Model I
Model II

 
Fig. 4 SPH solutions for pollutant transport with Pe = 100. 

Conclusions 
This paper reports two Lagrangian particle models for the simulation of pollutant transport in open 
channel flows. Although both of them can give good solutions, Model II without a second-order 
derivative approximation has better convergence behavior. As all the developed formulations are in 
multi-dimensional form, the extension to high dimensions is straightforward and being worked on.  
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