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Abstract: Through improved select tactics and genetic operators, the accelerating genetic algorithm 
(AGA) and simulated annealing algorithm (SA) were combined to form a new algorithm called 
accelerating genetic and simulated annealing algorithm (AGSA). A modified method to develop the 
flow rate prediction model of the continuous micro-filtration (CMF) system was proposed based on 
improved hybrid genetic algorithm and support vector machine (SVM). A new self-adapting 
optimized algorithm was formed and applied to the SVM parameters. The hybrid genetic algorithm 
was utilized to perform variable selection, and SVM was employed to construct prediction models. 
The prediction models were verified by a flow rate experiment in a pilot-scale continuous 
micro-filtration system. Results showed that the proposed model can reveal the rule of flow rate 
variation in CMF. It produced a small error and exhibited strong correlation (R2=0.91, 
MAE=0.0132, SSE=0.0055, RMSE=0.0155) between predicted and measured values. This result 
reveals that the model has strong predictability. According to the leave-one-out cross validation of 
training samples, the model also shows good robustness (R2=0.89, MAE=0.0164, SSE=0.0073, 
RMSE=0.0178). The model developed by AGSA-SVM was compared with the model constructed 
by a BP neural network. The former exhibited optimal predictive capability and robustness in the 
comparison and is thus more suitable for the flow rate prediction of CMF. 

Introduction 

Continuous microfiltration (CMF) is mainly employed for product classification, concentration, 
separation, and purification; it has been widely utilized in the field of environmental protection, 
food, chemical, and others [1–3]. Its non-ideal flux changes because of membrane fouling. Thus, 
accurately predicting the membrane flux change rule, timely adjustment of operating conditions and 
operation parameters, and long-term stable operation of the membrane system are of practical 
significance. Given the diversity of the micro filter system and the complexity of the pollution 
mechanism, no universally applicable models exist to predict the flux change rule of the pollution 
membrane. Chinese and foreign scholars have established micro filtration flux models based on 
phase separation in the membrane hole shrinkage jams, surface adsorption, sedimentary 
characteristics, and multi-effect synergy to describe concentration polarization, membrane pore 
blocking, congestion, and sedimentary layer factors [4–7]. However, given the numerous 
parameters and complex process, relying on such models for optimization research at different 
operating conditions (temperature, pressure, etc.) is difficult. For this type of multi-factor, 
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multi-level, nonlinear complicated problem, the accuracy is not ideal when linear models, such as 
linear regression, time series method, and index smoothing method, are used to solve problems 
[8–10]. Piron [11] and Guangmin Sun [12] introduced the improved neural network method for the 
prediction of microfiltration flux; the method, to a certain extent, overcomes the shortcomings of 
traditional methods. Considering that the neural network has many defects to overcome, a 
general-scale membrane system experiences difficulty providing sufficient data for sample training 
in the short term. Hence, the application of this method to a practical range is limited. The support 
vector machine (SVM) method has improved generalization capability for future samples and a 
good prediction effect despite the lack of data; however, the system structure is not very clear [13, 
14]. Therefore, this article focuses on the method to establish a forecast model of the CMF system. 
The hybrid genetic algorithm is improved and coupled with the SVM method to construct an 
adaptive optimization algorithm for SVM model parameters and improve the prediction accuracy of 
microfiltration flux on the surface of the membrane. The effect of changes in membrane flux 
prediction of sudden water pollution in short-term adjustment is analyzed to provide a scientific 
basis and technical methods to optimize operation conditions. 
SVM 
SVM is a machine learning method based on statistical learning theory [15]. In SVM, an 
appropriate inner product function is defined to achieve a transformation of the input space to a 
high-dimensional space. In this new space, the optimal linear hyperplane space is obtained. The 
specific principle is as follows. 

For given sample data { } n
kk Ryx ⊂, , through nonlinear mapping )(∗ϕ , the training data are 

mapped into a high-dimensional feature space (Hilbert space). The nonlinear function in the input 
space estimation problem is translated into a linear function estimation problem in the 
high-dimensional feature space. The function has the form 
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The dimension of the high-dimensional feature interval n  is not fixed, and b is the offset. Based 

on the principle of structural risk minimization in statistics, the minimum of risk function )(xf  
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The kernel function ( )ji xxK ,  in Equation (4) is an arbitrary function satisfying the Mercer 

conditions. Parameters a  and ∗a  are called Lagrange multipliers. To solve the problem involving 

parameters a  and ∗a , the Kuhn Tucker conditions can be utilized to obtain bias b . Then, one can 

obtain the output support vector machine for 
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Given that this method is based on structural risk minimization instead of empirical risk 
minimization, the training is equivalent to solving quadratic programming problems. The 
phenomenon of learning does not appear when a small sample is trained. Thus, the model has strong 
generalization capability, and its solution is the global optimal solution. The problem of local 
extremum does not occur. 
Improved Hybrid Genetic Algorithm 
The genetic algorithm is a random search method that refers to natural biological selection and 
natural genetic mechanisms. The algorithm has strong adaptability, robustness, and global search 
capability. However, it has several shortcomings, such as premature convergence and local optimum 
[16]. 
The simulated annealing algorithm is a method to solve extreme programming problems by 
simulating the cooling process of the classical particle system in thermodynamics. It has a strong 
local search capability, and the search process can avoid local convergence. However, the process of 
finding the optimal solution requires a high initial temperature, slow cooling rate, and low end 
temperature; thus, the optimization process requires much time [17]. 
In view of the advantages and disadvantages of the two algorithms, the simulated annealing 
operator was embedded in the genetic operations [18] and improved selection strategy and genetic 
operators in this study. The characteristics of implicit parallelism genetic algorithm and simulated 
annealing algorithm were effectively combined for global optimization to establish the accelerating 
genetic and simulated annealing algorithm (AGSA). The specific process is as follows. 
① The size of the population was determined. The initial temperature, crossover rate, mutation rate, 
and other parameters were set. A real code was used to encode each state, and the initial population 
was randomly generated. 
② The annealing penalty factor fitness function was combined, the fitness of each individual was 
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calculated and decoded, and fitness evaluation was performed. 
③ Genetic algorithms, such as crossover and genetic mutation manipulation, were used to optimize 
the initial population and produce new populations. 
④ An optimal retention policy was introduced to train the new population through the simulated 
annealing algorithm. 
⑤ After training the population, genetic selection manipulation, crossover, and mutation were 
applied to select and generate an excellent program group. 
⑥ Determine whether to accelerate the iteration and if the termination conditions are satisfied. 
Return to step 1 until the conditions are met. 
Model build 
Based on SVM principles, the factors that have an impact on water production of the CMF system, 
such as temperature, pressure, and concentration, were selected as a sample input. Water production 
was selected as the sample output to constitute the SVM modeling sample data sets and establish 
the CMF water production forecasting model. Normalization method was selected to unify the 
sample data to [0, 1] and reduce the calculation error caused by different dimensions. 
The SVM model commonly utilizes kernel functions, including polynomial kernel, RBF kernel 
function, sigmoid, and radial kernels. Hsu [19] reported that the radial basis function (RBF) or 
polynomial kernel function is highly suitable for nonlinear problems. Therefore, the RBF radial 
basis function was used as a kernel function in this model. 
Parameter Optimization and Computing 
Determination of the punishment factor, insensitive loss parameters, RBF radial basis functions, 
embedding dimension, and other parameters has a direct impact on the final result of prediction 
accuracy. Hence, these parameters have to be identified and optimized. Given the existence of the 
premature convergence defect of the standard genetic algorithm, in this study, it was coupled with 
improved AGSA with the SVM prediction model to achieve model parameter adaptive optimization 
while maintaining speed and efficiency in solving the model. Maintenance of both characteristics 
facilitates the achievement of the model solution and prevents local convergence or premature 
convergence [16] to achieve the desired results. The specific steps are shown in Figure 1. 

Model validation 

Test Equipment 
A continuous microfiltration pilot system was investigated using test equipment with a daily 
capacity of 110 m3, as shown in Figure 2. The main components of the system are as follows: 
microfiltration host, water supply system, backwash system, compressed air system, chemical 
cleaning system, PLC control system, and so on. The system, which contains four sets of 
independent control systems and membrane components, can be in parallel on the condition that 
four different water production membrane systems exist. Pilot tests were conducted using outside 
pressure type hollow fiber membrane modules at the reclaimed water workshop of the sewage 
treatment plant of TianJin RongCheng Iron & Steel Corp. The specific technical parameters are 
shown in Table 1. 
Sample Acquisition, Classification, and Input 
The CMF system was observed in continuous experiments under different conditions, and the 
samples were built separately. The changes in operation parameters (e.g., pressure) in the process 
flow were recorded by a single membrane module in the continuous microfiltration system. 
Historical load data, which were of the same type as the prediction data, were selected as training 
samples. Among them, the first 24 groups of data were selected as the training sample set, and the 
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next 24 groups of data were selected as the forecast validation sample set. The results are shown in 
Table 2. For comparison, while training the established model, the same experimental data were 
used to train the neural network (BP model). 

 

 
Fig.2 The Schematic of CMF 
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Table.1 Technical parameters of CMF 

Filter form 
Membrane 
materials 

Aperture 
/（μm） 

Filtration 
velocity 
/(m3·h-1) 

Maximum 
operating 
pressure 

/（MPa） 

Membrane 
area 

/（m2） 

Operating 
temperature 

/（˚C） 

External 
pressure 

type 

Hollow 
fiber 

0.2 1.10～1.20 ≤0.15 42 5~45˚C 

Result Analysis 
Prediction Performance Evaluation 

To test and compare the model, the accuracy and correlation of the model were analyzed by 
calculating R2 (the correlation factor between predicted and measured values), mean absolute error 
(MAE), sum of squares due to error (SSE), and root mean square error (RMSE). The results are 
shown in Table 2. 
Table 2 shows that the residual error between the values calculated by the BP model and the test 
samples, which was separately predicted using the trained BP and AGSA-SVM models, was in the 
range of 0.041–0.067. R2, MAE, SSE, and RMSE were 0.71, 0.0265, 0.0216, and 0.71, respectively. 
The residual error between the values calculated by the AGSA-SVM model and test samples was in 
the range of 0.015–0.035. R2, MAE, SSE, and RMSE were 0.91, 0.0132, 0.0055, and 0.91, 
respectively.  

Table.2 Comparison of predicted values of testing sample 

Sample 
number 

Press 
/（MPa） 

Temperature
/（˚C） 

pH 
Measured 

values 
/（m3·d-1） 

BP AGSA-SVM 
Predictive 

values 
/ （m3·h-1） 

Residual 
Predictive 

values 
/ （m3·h-1） 

Residual 

1 0.125 17 8.24 0.86 0.834 0.026 0.841 0.019 
2 0.132 19 8.31 0.82 0.796 0.024 0.801 0.019 
3 0.115 16 8.21 0.88 0.909 -0.029 0.89 -0.01 
4 0.123 18 8.25 0.82 0.832 -0.012 0.812 0.008 
5 0.126 14 8.32 0.81 0.825 -0.025 0.787 0.013 
6 0.117 16 8.25 0.86 0.83 0.03 0.875 -0.015 
7 0.128 15 8.24 0.94 0.883 0.057 0.927 0.013 
8 0.119 18 8.26 0.74 0.711 0.029 0.734 0.006 
9 0.124 13 8.29 0.86 0.871 -0.011 0.871 -0.011 
10 0.118 18 8.32 0.92 0.897 0.023 0.93 -0.01 
11 0.121 14 8.22 0.88 0.869 0.011 0.868 0.012 
12 0.133 16 8.25 0.82 0.78 0.04 0.794 0.026 
13 0.117 18 8.32 0.87 0.911 -0.041 0.876 -0.006 
14 0.122 13 8.32 0.90 0.936 -0.036 0.876 0.024 
15 0.121 16 8.28 0.83 0.795 0.035 0.832 -0.002 
16 0.118 15 8.31 0.83 0.857 -0.027 0.826 0.004 
17 0.12 16 8.25 0.82 0.753 0.067 0.785 0.035 
18 0.119 18 8.27 0.78 0.768 0.012 0.789 -0.009 
19 0.121 19 8.32 0.76 0.778 -0.018 0.738 0.022 
20 0.123 16 8.31 0.80 0.779 0.021 0.814 -0.014 
21 0.133 16 8.25 0.80 0.812 -0.012 0.812 -0.012 
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22 0.117 18 8.32 0.80 0.822 -0.022 0.811 -0.011 
23 0.122 13 8.32 0.84 0.831 0.009 0.85 -0.01 
24 0.128 15 8.24 0.86 0.842 0.018 0.855 0.005 

 R2   0.71  0.91 
 MAE   0.0265  0.0132 
 SSE   0.0216  0.0055 
 RMSE   0.0306  0.0155 

The results show that the benefits of the trained AGSA-SVM model in comparison with the BP 
model are as follows: the prediction values agree well with the measured values, the model has 
remarkable correlation and better forecast capability, the model can overcome the shortcomings of 
the BP neural network (easily falls into the local minimum value), reduced prediction error, and 
improved prediction precision and accuracy. 

 Model Cross Validation 
The leave-one out procedural test was performed to cross validate and compare the robustness of 
the CMF membrane system prediction model [20]. The membrane flux of the training sample set 
was separately predicted by hybrid genetic SVM algorithm and BP neural network method daily. 
The forecast results of cross validation are shown in Table 3. The predicted and measured values of 
the correlation diagram are shown in Figure 3. 
Table 3 shows that the residual error of cross validation by the BP model was between 0.055 and 
0.039; R2, MAE, SSE, and RMSE were 0.69, 0.029, 0.0235, and 0.69, respectively. The residual 
error range of the AGSA-SVM model was between 0.023 and 0.028; R2, MAE, SSE, and RMSE 
were 0.89, 0.0164, 0.0073, and 0.0178, respectively. Figure 3(a) shows the BP model correlation 
diagram of the predicted and measured values. The visible part of the deviation is large, and the 
correlation between predicted and measured values is low. The error is obvious. The verification 
results show that based on the neural network BP algorithm of CMF water production, the 
robustness of the forecast model is poor. Figure 3(b) shows the AGSA-SVM model correlation 
diagram of the predicted and measured values. The error is small. The prediction model based on 
AGSA-SVM has good robustness. In conclusion, comparison of two different prediction models, 
namely, neural network BP algorithm and AGSA-SVM, shows that AGSA-SVM is better than the 
BP algorithm in terms of model robustness and is more suitable for the prediction of and research 
on water production of the CMF system. 

Conclusion 

(1) Through improved select tactics and genetic operators, AG and SA algorithms were combined to 
form AGSA. A modified method to develop the flow rate prediction model of the CMF system was 
proposed based on improved hybrid genetic algorithm and SVM. A new self-adapting optimized 
algorithm was formed and applied to the SVM parameters. The hybrid genetic algorithm was 
utilized to perform variable selection, and SVM was utilized to construct prediction models.  
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Table.3 Comparison of predicted valuesbycross-validation 

Sample 
number 

Temperature/
（˚C） 

Press 
/（MPa） 

pH 
Measured 

values 
/（ m3·d-1） 

BP AGSA-SVM 
Predictive 

values 
/（ m3·h-1） 

Residual 
Predictive 

values 
/ （m3·h-1） 

Residual 

1 17 0.125 8.32 0.86 0.838 0.022 0.848 0.012 
2 19 0.132 8.31 0.8 0.763 0.037 0.819 -0.019 
3 16 0.115 8.24 0.8 0.855 -0.055 0.773 0.027 
4 18 0.123 8.32 0.76 0.732 0.028 0.772 -0.012 
5 14 0.126 8.32 0.78 0.802 -0.022 0.773 0.007 
6 16 0.117 8.31 0.82 0.786 0.034 0.803 0.017 
7 15 0.128 8.26 0.88 0.867 0.013 0.864 0.016 
8 18 0.119 8.31 0.91 0.925 -0.015 0.889 0.021 
9 13 0.124 8.28 0.88 0.915 -0.035 0.893 -0.013 
10 18 0.118 8.31 0.84 0.826 0.014 0.831 0.009 
11 14 0.121 8.22 0.86 0.843 0.017 0.852 0.008 
12 16 0.133 8.25 0.88 0.927 -0.047 0.9 -0.02 
13 18 0.117 8.31 0.86 0.831 0.029 0.88 -0.02 
14 13 0.122 8.21 0.78 0.754 0.026 0.769 0.011 
15 16 0.121 8.22 0.82 0.793 0.027 0.792 0.028 
16 15 0.118 8.25 0.84 0.851 -0.011 0.858 -0.018 
17 16 0.12 8.31 0.78 0.811 -0.031 0.755 0.025 
18 18 0.119 8.21 0.78 0.826 -0.046 0.796 -0.016 
19 19 0.121 8.31 0.84 0.828 0.012 0.827 0.013 
20 16 0.123 8.21 0.9 0.872 0.028 0.885 0.015 
21 15 0.121 8.26 0.9 0.864 0.036 0.909 -0.009 
22 14 0.119 8.29 0.9 0.931 -0.031 0.881 0.019 
23 14 0.119 8.24 0.8 0.842 -0.042 0.823 -0.023 
24 13 0.115 8.25 0.76 0.721 0.039 0.744 0.016 
 R2  0.69  0.89  
 MAE  0.0290  0.0164  
 SSE  0.0235  0.0073  
 RMSE  0.032  0.0178  
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(2) The prediction model was verified through a flow rate experiment in a pilot-scale continuous 
micro-filtration system. The results showed that this model can reveal the rule of flow rate variation 
in CMF. It had a small error and strong correlation (R2=0.91, MAE=0.0132, SSE=0.0055, 
RMSE=0.0155) between predicted and measured values. The model has strong predictability. 
According to the leave-one-out cross validation of training samples, the model also has good 
robustness (R2=0.89, MAE=0.0164, SSE=0.0073, RMSE=0.0178).  
(3) The model developed by AGSA-SVM was compared with the model constructed by the BP 
neural network. The former showed optimal predictive capability and robustness, indicating that it 
is more suitable than the latter for the flow rate prediction of CMF. 
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