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Abstract. This paper proposes a new method in which the number of dependent constraints is
determined based on the transformation parameters of the coordinate systems associated with the
links of a mechanism; the number of homonymous parameters that are equal to zero is subsequently
used to determine the overall mobility (number of DOF) of the mechanism. This method can be used
to solve problems involving the analysis and synthesis of the topological structure of any closed
mechanism or parallel manipulator.

Introduction

The number of degrees of freedom (DOF) of a mechanism is determined by analysing its
topological structure. Therefore, for instance, when solving a kinematics problem, the number of
DOF determines the number of independent parameters in the position function. In the dynamics and
control of mechanisms and manipulators, the number of independent dynamic equations and the
number of actuators is equal to the number of DOF. This is why it is important to be able to accurately
determine the number of DOF for single-loop and multi-loop mechanisms, including parallel
manipulator mechanisms.

However, the analysis performed by Grigore Gogu [1] of studies published in the past 150 years
indicates that to date, no theory or method for determining the number of DOF that is applicable to
any arbitrary mechanism has been developed.

Therefore, the purpose of this paper is to obtain a universal and convenient method for determining
the number of dependent constraints for subsequent DOF calculations concerning closed mechanisms
and parallel manipulators. The objective is to use the coordinate transformation obtained from the
mechanism’s kinematics and its dynamical equation

Choosing the Coordinate Systems for the Links

According to kinematics [2], the position of a mechanism and the relative positions of its links can

be determined using ��
��� homogeneous transformation matrices. The elements of the ��

��� matrices
are the transformation parameters or trigonometric functions derived from them. The transformation
parameters are the values of the linear or angular displacements that are required to merge the
coordinate systems connected by joint-forming links. Fig. 1 shows the transformation parameters, δl,
θl, αl, αi, bi, and βi, that are necessary to superpose the Oi-1Xi-1Yi-1Zi-1 and OiXiYiZi coordinate systems.
Here АВ=ai – common perpendicular to the arbitrarily oriented axis Oi-1Zi-1 and Oi Z i. In this paper,
the transformation parameters are used to define the positions of links relative to each other. It should

be noted that this paper neither specifically defines the transformation parameters of the ��
���

homogeneous transformation matrices nor solves matrix equations following the tradition of
kinematics. Instead, the purpose of this paper is to demonstrate that the number of dependent
constraints can be determined indirectly by analysing the transformation parameters. The solution to
the problem begins with the recognition of the rules governing the Oi-1Xi-1Yi-1Zi-1 and OiXiYiZi
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coordinate systems associated with each pair of links, i and i-1, between which (i-1-i) joints are
formed (i=1,…,n, where n is the total number of mobile links). A fixed link (frame) is denoted by the
numeral zero (0). The main condition for selecting coordinate systems is that all of the kinematic
variables describing the positions of the links and constant geometric quantities (the size of the links,
the twist angles, etc.) must be included in the number of transformation parameters.
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Fig. 1 The transformation parameters.

When choosing a coordinate system, the following are recommended:
• The Zi-1 axes should be oriented along the axes of cylindrical, screw, prismatic, or revolute

(i-1)-i pairs or perpendicular to faces with slots for the fingers of two mobile spherical (i-1)-i pairs.
• The origin of the Oi-1Xi-1Yi-1Zi-1 coordinate systems should be set at the centre of a spherical

(i-1)-i pair.
• The direction of the X0 axis, which is associated with the support frame, must be chosen

arbitrarily. The direction of the Xi axis should be selected so that it is perpendicular to the plane that
contains the Zi-1 and Zi axes if these axes intersect; if these axes do not intersect, it should be
perpendicular to the Zi-1 and Zi axes. In a spherical kinematic pair with the finger, the Xi axis should be
directed along the axis of the finger.

Thus, the mutual locations of the links forming the (i-1)-i joint is uniquely determined by six
transformation parameters: three linear displacements, di, ai, and bi, along the generally non-coplanar
Zi-1, AВ, and Zi axes and three rotation angles θi, αi, and βi around the same axes. The basis vectors of

the Zi-1, AB, and Zi axes are the unit vectors 1−ik
r

, ie
r

, and ik
r

, respectively. The vector is used to

provide vector designations for the transformation parameters, where the index r=1, …, 6 denotes the
number of the transformation parameter and the index i=1, …, n denotes the number of links and
kinematical pairs of the mechanism, where n is the total number of mobile links. Using this
designation, the transformation parameter vectors can be written as follows:

(1)
It should be noted, that in the cases where it is feasible, the Denavit Hartenberg method for

selecting and transforming a coordinate system can be used. As it is known, in this case the four
transformation parameters are used.

An analysis of the Transformation Parameters

The transformation parameters, di, θι, ai, αi, bi, and βi, may be variable, constant, or equal to zero.
Particular note should be taken of the parameters that are equal to zero because they characterize
peculiarities of the relative locations of the Oi-1Xi-1Yi-1Zi-1 and OiXiYiZi coordinate systems. Therefore,
the zero-valued parameters characterize peculiarities of the configuration of joints. Table 1 describes
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these peculiarities of the locations of the coordinate system in which the transformation parameters
equal to zero .

Table 1. The parameters are zero and the corresponding of the peculiarities of the relative positions
of the coordinate systems.

Transformation
parameter

equal to zero

Peculiarities of the relative positions of the associated coordinate systems
Oi-1Xi-1Yi-1Zi-1 and OiXiYiZi.

di
The origin of the Oi-1Xi-1Yi-1Zi-1 coordinate system is located at point A, namely,
the intersection of the Oi-1Zi-1 axis with the mutual perpendicular AB

θi The Oi-1Xi-1 axis is oriented parallel to line AB or perpendicular to the Zi axis
ai The Oi-1Zi-1 and OiZi axes intersect

αi The Oi-1Zi-1 and OiZi axes are parallel

bi
The origin of the OiXiYiZi coordinate system is located at point B, namely, the
intersection of the OiZi axis with the mutual perpendicular AB

βi The OiXi axis is parallel to line AB

A Determination of the Number of Dependent Constraints and DOF

Let us consider a mechanical system with holonomic stationary constraints that is composed of n
members (i=1, …, n). All of the forces acting on each link i, including inertia, are represented by 3

force components ��
� and 3 pairs of forces with moments ��

� (l=1,2,3) directed along the vectors ��⃗ ���,

ie
r

, and ik
r

(1). Then, all of the forces and moments can be represented using generalized force

vectors.
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The general dynamical equation for the given system at a virtual displacement is

0
6

1

=∑
=r

ririQp
v

δ (i=1,…,n), (3)

where )iiiiiiri QQQQQQQ 654321

rrrrrr




= is a column vector whose elements are the generalized force

vectors
riQ (2) and ( )Tiiiiiiri ppppppp 654321

rrrrrr
δδδδδδδ = is a row vector whose elements are the

possible displacement vectors of the transformation parameters given in (1).
The matrix equation given in (3) is equivalent to a linear system of equations of the form

0332211 =+++++ iiiiiiiiiiii MFbMFaMFd δβδδαδδθδ , (i=1,..,n). (4)

In this equation, it is understood that the forces and moments are variables and that the possible
changes in the transformation parameters ( )iiiiii bad δβδδαδδθδ are the coefficients of a

system of Eq. (4) that describes a linear space of no more than 6 dimensions because the column rank

of the R matrix is limited to 6 - R≤6.

If all of the links are rigidly connected by means 6 constraints imposed on each joint, then all of the
equalities in Eq. (4) are satisfied, and the equation system has a rank of 6. From this, it follows that the
system of equations given in Eq. (4) governs a constraint space and that the rank of the R matrix,
which defines the dimensionality of this space, corresponds to the number of independent constraints.

Changing the dimension of the space, i.e., the number of independent constraints, is possible when
the transformation parameters are dependent or zero. Cases in which the transformation parameters
are equal to zero due to the mutual orientation of the coordinate axes are discussed before. The
possible dependency of the transformation parameters is discussed here. Suppose the Oi-1Zi-1 and OiZi

axes are parallel, then, the transformation parameters di, bi and  θι, βι characterize the linear and
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angular displacement in the same direction. Therefore, the expressions in Eq. (4) are similar and as a
result, the number of similar terms is reduced to four. In this case, the duplicate terms should be set to
zero (bi=βi=0), which is equivalent to reducing the number of summands in Eq. (4). Conversion is
also possible when there are dependent parameters. For example, transforming some pairs of
parameters is equivalent to moving the system along an axis twice. Then, Eq. (3) is reduced by one
summand because the expressions for the generalized forces of motion along the same axis are similar.
In this case, the dependent parameters are both repeated, and one of them is zero. In this case, the
system’s coefficients are equal to zero when the corresponding transformation parameters are equal to
zero. In some cases, for example, in the overconstrained linkages there are repetitive kinematic chains,
which allow to derive additional equations for further processing. These equations reduce the number
of independent Eq. (4), that is, every equation which is new to the system of four (4) equations,
reduces the size of the constraint space. In order to define the conditions for determining the number
of independent constraints in a closed kinematic chain, we will summarize in the four (4) equations
the basic effects of similar forces and reaction force pairs (a vertical summation will be performed).
Thus, the following equation is derived:
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To find out which of the summands in an equation becomes zero, let’s review any given standalone
summand, for example as follows:
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In this example, the reaction forces cannot equal zero based on constraints of the given linkage.
Transformation parameters in each linkage are independent values. Hence the following conclusion;
this equation can only be executed on condition that all homonymous transformation parameters (dk

in this case) equal zero. Thus, if a number of -S<6 zero value homonymous transformation parameters
is present in all of the four (4) system equations, then the rank of the coefficient matrix of the four (4)
equations, and consequentially the dimensions of space reduce by the value of S. In this case, the
maximum dimensions of the space described by the system (4) will equal R = 6- S. Coefficients that
are equal to zero correspond to parameters that are equal to zero, and it follows that the quantity S is
the smallest number of zero homonymous parameters present in each of the equations in the system.
For example, if for some mechanism, in the system of six equations of the form given in Eq. (4), 3 of
the parameters in the 1st equation, 4 in the 2nd, 4 in the 3rd, 3 in the 4th, 3 in the 5th, and 2 in the 6th are
zero, then S=2 because no fewer than 2 parameters are equal to zero in any of the system’s equations.
In this instance, the dimensionality of the space is R=6-S=4. Therefore, the number of independent
parameters defining constraints is 4, and S=2 is the number of dependent constraints. It follows that
the number of dependent constraints is equal to the smallest number of zero homonymous parameters
present any of the equations of system (4). An analysis of the system’s coefficient matrix (4) allows
the number of dependent constraints to be determined. From a practical point of view, determining S
for each closed loop mechanism or manipulator is sufficient to create a table (matrix) of the
transformation parameters. Then, using the table, the smallest number of zero homonymous
parameters in any row is determined. This determines the number of dependent constraints, S.

For a one-loop mechanism, the number of DOF is

SMW +−= 6 . (5)
The number of DOF of a multi-loop mechanism can be calculated using the following relation:

∑
=

+−=
k

i

SkMW
1

16 , (6)
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where k is the number of independent loops and Si is the number of dependent constraints on the i-th
loop. A dependency similar to the one given in (5, 6) has been reported in reference [3].

The Steps in Analysing the Structure of a Mechanism Using the Zero Transformation
Parameters

The sequence of steps in the analysis of a mechanism is as follows:
1. Assign numbers to the mobile links. The frame should be labelled 0.
2. Define the number of independent loops.
3. Choose a coordinate system connected with the links in accordance with the recommendations

given in Part 1.
4. Determine the transformation parameters and make a table of the transformation parameters in

each loop by merging the coordinate systems in sequence (Part 2). Exclude the dependent
parameters. Then, determine which row has the fewest parameters equal to zero. This
minimum number of zero parameters is equal to the number of dependent constraints on the
loop under analysis.

5. Use formula (5) or (6) to determine the number of DOF of the mechanism.
An analysis of the structures of mechanisms for which there is a divergence between the actual and

calculated (using traditional methods) numbers of DOF is presented below.

Samples Analyses of Mechanisms’ Structures

Let us consider a four-bar mechanism (Fig. 2) that is called the spherical mechanism, in which the
axes of revolute pairs intersect at a point O.

Fig. 2 The spherical mechanism.

In Fig. 2, the links are denoted 0-3 and the Zi axes associated with links that are oriented along the
axes of revolute kinematic pairs are selected. The direction of the X0 axis is chosen perpendicular to
the plane Z0ОZ3. The other XI axes are perpendicular to the plane containing the Zi-1 and Zi axes. To
combine the coordinate systems O0X0Z0 and O1X1Z1, the following steps are taken. The system
O0X0Z0 is shifted along the O0Z0 axis by a distance d1=O0O. The OX0 axis is rotated through an angle
θ1 to align it with the O1X1 axis. The O1X1 axis is not shifted; therefore, a1=0. From this position, the
system is rotated through an angle

101 OOO∠=∠α . The system is shifted a distance b1=OO1 along the

OZ1. There is no need to rotate the O1Z1 axis; therefore, β1=0. Similar actions are performed to
identify the transformation parameters of the other kinematic pairs. As a result of this transformation,
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the dependent parameters, namely b1=d2, b2=d3, and b3=d4, b4=d1 are found. In accordance with the
conclusions obtained in Part 4, we set b1=b2=b3=b4=0. The transformation parameters for the
kinematic pairs obtained after eliminating the dependent parameters are summarized in Table 2.

Table 2. The transformation parameters for the spherical mechanism.

Joint formed by the
specified links

Transformation parameters

di θi ai αi bi βi

0-1 d1= O0O θ1 0 α1 0 0

1-2 d2= OO1 θ2 0 α2 0 0

2-3 d3= OO2 θ3 0 α3 0 0

3-0 d4= OO3 θ4 0 α4 0 0

From an analysis of Table 2, it is found that M=4, i.e., θi=Var, and S=3; therefore, according to
formula (5), the number of DOF of this mechanism is W=1.

Conclusions

This paper proposes a method of kinematical analysis based on the use of the zero transformation
parameters of coordinate systems to determine the number of dependent constraints, given the
topological structure of a closed-loop mechanism or manipulator. It is proven that the number of
homonymous transformation parameters that are zero depends on the rank of the coefficient matrix of
the system of linear equations derived from the general dynamical equations. It is also found that the
number of dependent constraints is equal to the smallest number of zero homonymous parameters
(coefficients equal to zero) in any equation of the system. Once all of the dependent constraints have
been found, the number of DOF of a single-loop or multi-loop closed mechanism can be determined
based on the known dependencies.
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