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Abstract. The results demonstrate that the effect of elasticity in plastic zone on elastic-plastic fields
is remarkable in many cases, while elastic volume deformation in plastic zone generally has been
omitted in the solution procedures of the classical plastic theory due to the mathematic problems.
The analytical results are further validated by finite element analyses, and it is concluded that the
analogy results are physically more reasonable, especially in the existence of considerable
hydrostatic stress.

Introduction

Most elastic-plastic solutions are based on the deformation theory of plasticity or the non-linear
elasticity theory. However, to obtain the analytical solutions even for elastic-plastic plane strain
problems is generally very difficulty. One problem is that the elastic-plastic constitutive law usually
depends on out-of-plane stress 33σ in a complicated manner and its elimination is not easy as

reported [1]. Elastic deformation in elastic-plastic problems was taken into account have been
reported [2], but the solution procedures and the expressions are general too complicated. For most
relatively complex problems, such as elastic-plastic crack tip fields, the incompressible or full
plastic assumption has been are employed to simplify the constitutive law. So it is assumed that

5.0)/( 221133 =+σσσ in plastic zone [3-7], and νσσσ =+ )/( 221133 in elastic zone (where 33σ is

out-of-plane stress, 2211,σσ are in-plane stresses, andν is Poisson's ratio).

However, the incompressible or full plastic results are the limited cases of real elastic-plastic
fields, and they are applicable only on the condition that mean stresses are comparatively very low.
The effect of elasticity in elastic-plastic crack-tip fields was reported [8-11], but in general, the error
due to the incompressible or full plastic assumption is unclear. The current study focuses on
investigating the effect of elasticity in plastic zone on elastic-plastic fields.

Simplification of Plane Strain Elastic-Plastic Problems

Elastic-plastic plane strain problems for the deformation theory of plasticity are considered. For
simplification, the bi-linear elastic-plastic model is studied. The stress-strain relation in multiaxial
stress state is in the form of
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where, oσ is the initial yield stress and Eoo /σε = is the corresponding strain, pE denotes the
tangent modulus of elastic-plastic stress-strain curve (i.e., the slope of the line as oσσ > ), ν is
Poisson's ratio, the strain components ijε are related to the deviation stress components ijS of
stress tensor ijσ , ijmijijS δσσ −= , and oee σσσ = , oijij SS σ= all parameters with overbars
are dimensionless ones throughout this paper.

Some different cases of elastic-plastic fields referred in literature are discussed firstly. As
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∞→= oee σσσ , Eq. (1) is simplified as
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In this case, the out-plane stress is

)]()1(5.0[ 221133 σσνσ +−⋅+= p
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The crack tip solution by employing Eq. (2) was reported [9]. Moreover, if the first two elastic

terms are omitted ( i.e. 0=e
jiε ; p

jiji εε = ), the full plastic constitution is obtained,
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)(5.0 221133 σσσ +⋅= . (5)

The bi-linear crack tip solution by employing incompressible model of Eq. (4) was reported by
Hutionson [3]. The full plastic model assumes that elastic strain is zero and plastic strain is the total
strain, and also that materials are incompressible.

The cases for bi-linear materials are discussed above. Similarly, the crack tip solutions for
power-law materials by employing incompressible model were also reported by many literatures
[3-7].

The Out-plane Stresses of Plane Strain Elastic-Plastic Problems

For plane strain elastic-plastic problems, the constitutive law usually depends on 3σ in a

complicated manner and its elimination is not equally easy [1]. Generally, in elastic-plastic
condition, out-of-plane stresses should be

)( 221133 σσνσ += pe (6)

where, νe p is a parameter for elastic-plastic plane strain problems. As 0.1≤= oee σσσ ( i.e., in

linear elastic condition), there is νν =pe . The effective stress eσ is in the form of
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By substituting Eq. (6) into (7), a relation between eσ and νe p is obtained,

( ) ( ) 11
222 11 σννσ ⋅−+−+−= eppee kkk . (8)

Here 1122 σσ=k (by assuming 2211 σσ ≥ ), and its different values represent different stress

states of the biaxial elements. For plane strain problems, with 033=ε , the following relation could

be directly derived from Eq. (1).
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So a general relation between eσ and νe p were obtained [11], it can be rewritten as
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By combining of these two epe σν ~ relations leads to
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it can be expressed as

),,,,(),,,,( 02211011 νσσσνννσσνν ppepeppepe EEorEEk == . (10b)

The value of peν is determined by Eq. (10a) for different values k separately. The materials

constants are 0.3ν = ， GPaE 200= , 20,5== Pp EEn and 002.0/ == E
oo

σε . The

curves of peν versus k of different stress states are shown in Fig. 1. It is shown that the values of

peν is dependent on stress states. All the peν values for two kinds of materials cannot reach the

incompressible values of 0.5, especially as 0.11122 →= σσk .
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Fig. 1 Elastic-plastic Poisson’s ratio
peν of plane strain elements for different stress states.

By Eq. (6) and Eq. (5), we could obtain ep
Inc νσσ 5.033

.
33 = . So the deflections of 33σ due to

the incompressible assumption can be evaluated by the ratio of epν5.0 . With the peν values in

Fig. 1, it can be found that the deflections are considerable, especially as 11122 →= σσk . The

values of out-of-plane stress could be overestimated above 50% at most for two different materials
( 20,5=PEE ).

By substituting the equation of )(5.0 221133 σσσ +⋅= into effective stress Eq. (7). It leads to the

well-known incompressible equation of
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The deflections of effective stresses eσ due to the incompressible assumption are also

remarkable. Substituting Eq. (10) into Eq. (8), we get the distributions of effective stresses. For a

typical case, 0.11122 == σσk , 012 =σ , 20,5=PEE , the values of eσ are plotted in Fig. 2.
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Fig. 2 The effective stresses of elastic-plastic plane strain elements in biaxial tension.

It is seen that the values of eσ of Eq. (11) keeps zero, while the values of eσ of the analogy

results is dependent on elastic, plastic material data PEE , as well as load levels of 011 σσ . This

phenomenon means that so-called “incompressible materials” would never yield for the case of

0.11122 == σσk under plane strain condition, and neither plastic nor elastic deformation would

develop.

Concluding Remark

The present analysis is limited to the deformation plasticity theory (or the non-linear elasticity).
This work investigates the basic issues in the classical plasticity because it is very difficult to get an
analytical solution if the volume deformation related to hydrostatic stress were not omitted in its
solution procedure.

Some results of elastic-plastic plane strain problems are presented. It is concluded that the elastic
volume deformation developed in the so-called plastic zone is important to failure mechanism in
many cases, and further theoretical study is needed so as to develop the scheme for establishing
more convincing methodology to obtain the real elastic-plastic fields.
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