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Abstract. Flexible ball bearing is used as a component in wave generator of a harmonic drive gear 
system. During the revolution of the flexible bearing, the races of the bearing are subjected to elastic 
deformation by the shape of the elliptical cam. Thus, a reasonable mechanical model is established 
based on the analysis of the deformation and stress of the flexible bearing. Further, an analytical 
model of circular ring under the action of single force is established. Then a load distribution 
calculation model of the flexible bearing is transformed into linear equations by using the shell theory 
and the superposition principle. 

Introduction 

Flexible bearing is a thin section ball bearing, which has an inner ring and an outer ring laid on an 
inner circumferential surface, and a ball body radially held between the inner and outer rings. They 
can produce a required function when assembled with an elliptical cam. The controlled deformation 
of the flexible ball bearing makes the load distribution become more complex. The main challenge of 
the design to flexible ball bearing is that the rings must be strong enough to carry the load that 
applying on the ring, so it is necessary to figure out its load distribution. K. X. Le and Y. W. Shen 
developed an analytical model for calculation of flexible bearing and wave generator [1, 2]. Later, 
Gabriel Cavallaro et al. presented an analytical method to account for the structural deformation of the 
rings based on Roark’s formulas [3]. Ostapski, W. et al. made an analysis of stress state of flexspline 
and ball bearing in harmonic drive by using FEM method [4]. Z. P. Tang et al. had done the 3D contact 
analysis for deep groove ball bearing on ANSYS [5]. Recently, Alexandre, D. et al. built a nonlinear 
plan dynamic model for cylindrical bearings, which can predict the interaction forces between the 
retainers and the rolling elements [6]. J. W. Zhen et al used PATRAN to make flexibility treatment on 
the parts of deep groove ball bearing and established the multi-flexibility body rigid-flexible coupling 
model [7]. Through these studies, they studied stress, strain and friction stress among the inner ring, 
outer ring and cage. 

The Primary Curve of the Flexspline 

The inner ring race is to mounted on the elliptical cam with dimension. The sketch of an elliptical 
cam is shown in Fig. 1. The major axis semi-diameter of the elliptical cam is a=rb+w0, where rb 
represents the radius of the inner ring, and w0 represents the maximum radial displacement of the 
flexspline. The minor axis semi-diameter can be determined by the condition that the cam’s 
circumference is equal to the inner ring’s, suppose the circumference of the elliptical cam is 
approximately π(a+b), then the minor axis semi-diameter can be obtained by b=2rb-a= rb-w0 . So the 
parameter equation of the curve H of the elliptical can be expressed as: 

sinH Hx b                                                                                                                                                    (1) 

cosH Hy a                                                                                                                                               (2) 
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The polar equation of H can be expressed as: 
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Where ΦH represents the rotational angle of cam. 
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Fig. 1 Schematic sketch of an elliptical cam. 

 
When the generator has been assembled into the shell of the flexspline, the deformed original 

curve C of the flexspline is considered to be equidistant of the outer curve of H. 
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Fig. 2 Sketch of the geometric relationship of C and H. 

 
From the geometric relationship in Fig. 2 above, the primary curve C of the flexspline in cartesian 

coordinate can be expressed as: 
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where the sign is positive if 0°<φH <180°, and the sign is negative if 180°<φH <360°, and: 
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where, the sign is positive if 0°<φH  <90°or 270°<φH  <360°, and the sign is negative if 90°<φH 
<270°. hH is the normal distance between H and C. Rb represents the radius of the outer ring of the 
flexible bearing, δ represents the thickness of the flexspline gear ring respectively. 
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The polar equation of C can be expressed as: 

2 2
C C Cx y                                                                                                                                                             (6) 

Then the radial displacement of the primary curve C can be expressed as: 

( ) 0.5c C bw R                                                                                                                                                  (7) 

Curve Equation under Single Force Action on Ring 

A calculation model under single force action on ring is established as shown in Fig. 3, since the 
number of the rolling element in the flexible ball bearing used in the harmonic drive is odd, which 
means there can be one ball at most in the direction of the diameter. Then the solution equations of the 
static load distribution can be obtained by the superposition of the calculation model mentioned 
above. 
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Fig. 3 A calculation model under single force action on ring. 

 
The curved surface of cylindrical flexspline with double wave can be spread into a plane, which 

simplifies the 3D deformation of the cylinder into the plane problem. The cross section in Fig. 3 is 
locate at the middle in width of the flexible bearing.  

The strain energy of the shell can be obtained from [8], which can be expressed as the following 
differential equation: 
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where, w represents the radial displacement, rm represents the radius of the neutral surface of the 
flexspline respectively; Mp denotes the bending moment that leads to the circumference’s curvature 
changes in the cross section; υ denotes the Poisson’s ratio of the flexspline’s material; D represents the 
equivalent stiffness of the flexspline and the outer ring of the ball bearing, it can be calculated by the 
following formula. 
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where, E denotes the modulus of elasticity; Jp denotes the equivalent moment of inertia. 
According to the reference [2], the strain energy of the shell is: 
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Substitute (8) into the Eq. (10), then the strain energy becomes: 
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The radial displacement w can also be expressed as: 
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where, an and bn are undetermined coefficient. Substitute (12) into (11), then simplify the equation, 
the following equation is obtained: 
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The applied force only work in the place of φ=Φ, according to principle of virtual work: 
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an and bn can be solved by Eq. (14) and (15), then both them will be substituted into (12) and be 
simplified: 
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Mechanical Model of Flexible Ball Bearing 

The mechanical model of the flexible ball bearing is a circular ring that has the same stiffness with 
the real system. A total of N stress points are the N points of action of rolling elements, as shown in 
Fig. 5. If αb  is the angle between the two adjacent rolling elements, then the polar angle of the number 
j ball is φj=(j-1) αb. Obviously, the mechanical model in Fig. 5 is the superposition of N models under 
single force action on ring every αb angles. 
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Fig. 4 Model of the flexible ball bearing after deformation. 
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Suppose that wij is the radial displacement of the i point of the ring, and it is generated by the load 
of the j rolling element, while wci is the radial displacement of the i point of the curve defined in (7) , 
then the following equation will be obtained: 
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Substitute (16) into the Eq. (17), the mathematical model of the load distribution of the flexible ball 
bearing will be obtained. 
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where: 
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Model Parameters and Analysis  

The obtained mathematical model of the load distribution of the flexible ball bearing in Eq. (18) is 
a set of N-dimensional linear equations. The rolling element of the ball bearing can only bear the 
pressure and cannot bear the tension, while there may be a negative phenomenon in calculating Pj of 
Eq. (18). To handle this negative phenomenon, when the results are obtained for the first time, they 
should be checked by point, set the point to zero that the absolute value of the negative is the maximal, 
and note the number of this point. Recalculate the equation after its dimension is reduced by 
1-dimension, check by point again, and the cycle repeats itself until the values of Pj are no more 
negative. 

The parameters of the flexible ball bearing and the flexspline, and the material properties in the 
load calculation are shown in Table 1. To compare the calculated results with the results of the wave 
generator which is equipped with four-force action type cam, it is noted that the main parameters in 
the Table 1 is almost the same with [1], in this way, it can be proved that the calculation model in 
reasonable. 

 
Table 1. Parameters in the calculation. 

Ball diameter 14.288(mm) 
Number of balls 23 
Bearing width 25(mm) 
Poisson’s ratio 0.3 

Modulus of elasticity 210(GPa) 
Bearing outer ring radius 80(mm) 
Bearing inner ring radius 60(mm) 
Flexspline Neutral Radius 81(mm) 

Maximum radial displacement 0.7(mm) 

Simulation Results and Discussions 

The simulated results by MATLAB software are shown in Table 2. The load are mainly distributed 
in the area of 313~47 degrees and 141~219 degrees, the load center of the former area is located at 
344~16 degrees with the maximal value in the location of 0 degree, and the load center of the latter is 
located at 172~188 degrees with an equal value. The position is exact where the maximum radial 
displacement of the ellipse major axis locates at. 
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Table 2. Load distribution results of flexible ball bearing. 
No. w0=0.5 w0=0.6 w0=0.7 w0=0.8 No. w0=0.5 w0=0.6 w0=0.7 w0=0.8
1 708.39 845.30 980.75 1114.8 13 635.41 766.13 898.07 1031.2 
2 655.91 782.29 907.13 1030.5 14 537.31 647.32 758.12 869.7 
3 506.80 602.78 697.00 789.4 15 366.74 442.78 519.67 597.4 
4 329.14 392.76 455.72 518.1 16 199.80 240.74 282.06 323.8 
5 111.63 128.29 143.16 156.3 17 0 0 0 0 
6 0 0 0 0 18 0 0 0 0 
7 0 0 0 0 19 0 0 0 0 
8 0 0 0 0 20 111.63 128.29 143.16 156.3 
9 199.80 240.74 282.06 323.8 21 329.14 392.76 455.72 518.1 
10 366.74 442.78 519.67 597.4 22 506.80 602.78 697.00 789.4 
11 537.31 647.32 758.12 869.7 23 655.91 782.29 907.13 1030.5 
12 635.41 766.13 898.07 1031.2      

 

In the Table 2 above, the load distribution of two areas mentioned above is not symmetrical 
because the number of the rolling element is odd, while the load in the place of 172 degree is equal to 
the load in the place of 188 degree, this is because the balls in this two locations are symmetrical to the 
major axis. The load in the place of 0 degree is slightly larger than the load in the place of 172 or 188 
degree, which is correspond to the rules of radial displacement distribution of the elliptical cam 
profile. In addition, the load in the area of 78~110 degrees and 250~282 degrees is 0 where the minor 
axis of the elliptical cam locates, this is because that the radial displacement of the primary curve of 
the flexspline is negative, which means there is no load applied in this two areas. 

Moreover, it can be seen from Fig. 5 that the load of the two stressed area increases as the 
maximum radial displacement w0 increases, and the closer to the center of the load area, the more the 
corresponding load is added.  At the load center, each 0.1mm increase in the maximum radial 
displacement is related to about 133 N load increase accordingly. While away from the load center, 
the load of the flexible ball bearing is increased slowly with about 13 to 42 N increase per 0.1mm. 

 

 
Fig. 5 Calculated load distribution. 

Conclusion 

(1) A reasonable mechanical model is established and a group of linear equations is obtained. 
(2) The results is consistent with the radial displacement distribution of the elliptical cam. 
(3) The load of the two forced area increases as the maximum radial displacement increases. 
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