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Abstract. The LMD is a new method for analyzing non-stationary signals. It can decompose 
complicated signals into a set of single-component signals, each of which has physical sense. 
However, performing the LMD will produce end effects which make results distorted. After 
analyzing the reasons for these, the article takes advantage of the Gaussian process algorithm to 
overcome the end effects of LMD. To improve the precision of GP algorithm of endpoint extension, 
the authors use the particle swarm algorithm to optimization the GP hyper parameter and select the 
optimal covariance function. Experimental results showed that the GP algorithm of particle swarm 
optimization (PSO) can predict the two ends of the data signal more accurately, improve the 
accuracy of LMD and avoid the adverse effects caused by end effect according to the internal 
characteristics of the signal. Therefore the PSO-GP algorithm is a better method to improve the end 
effect. 

Introduction 

The LMD method possesses various good properties about theories, which makes it to be 
suitable for handling non-stationary signals. However, it is a new signal handling method, which 
needs more improvement when applying in practical situations. The end effect is one of the obvious 
and urgent problems which needed to be deal with [1]. Just as the empirical mode decomposition 
(EMD) [2-7], LMD also has the similar process to decompose complicated signals into a set of 
single-component signals according to local extreme signals continuously. During the 
decomposition process, it is needed to smooth continuous from the local extreme function lines 
which is made up by local extreme signal points and envelope estimation function lines. However, 
due to the fact that the two ends of signals may be neither a local maximum nor a local minimum, it 
could lead to the two end signals’ divergence phenomenon of local extreme function lines and 
envelope estimation function lines during the smoothing process, in addition, this divergence result 
would pollute the entire data sequence gradually and inwardly, which would give rise to serious 
distortion of decomposition results.  

In terms of the end effect problem of EMD method, there are various improvement methods 
which have achieve certain goals, however existing limitations in the meanwhile. For example, 
extreme signals extension method [8] only take into account information of some extreme signals 
which are close to end signals without conendration of internal characteristics of the signals. As for 
tackling complicated non-stationary signals, these results are less satisfactory. The boundary wave 
matching algorithm method [9] conendr internal characteristics and tendency of the signals, 
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however, this method lack adaptivity and have poor results about mutational signals of boundary 
waves. As for neural networks [10] and various prediction extension methods, the improvement 
effects are largely dependent on the setting parameters of prediction methods, simultaneously, the 
computation time is longer and this methods lack of practicality. Gaussian process (Gaussian 
Process, GP) is a recently developed new machine learning technique. The Gaussian process has 
rigorous theoretical statistical learning theories and foundations, which possess good adaptability to 
deal with complex problems of high dimensionality, sample timber and nonlinearity and so on, and 
obtain prediction accuracy and probability scientifically, which is a preferred non linear learning 
method [11, 12]. Based on experience to improve the end effect of EMD, this article conduct 
detailed analysis of the reasons leading to LMD end effect, as well as conendr applying Gaussian 
process to conduct end signal extension of Local Mean Decomposition. In order to improve the 
accuracy of prediction model of GP algorithm, it is needed to select suitable optimal covariance 
function for engineering cases and utilize the particle swarm algorithm to optimization the GP hyper 
parameter. Through simulation signals and practical engineering signals, the results of methods and 
algorithms this article has discussed about to inhibit LMD Decomposition end effect could be 
validated. 

Local Mean Decomposition and End Effect 

Local mean decomposition method is a new adaptive time-frequency analysis method. It can 
adaptively decompose complex multi-component signals into the collection of finite number of 
mode functions, where each component PF is actually an amplitude modulation of single 
component--frequency modulated (FM) signal, which is able to extract instantaneous amplitude and 
instantaneous frequency directly. When all of the instantaneous amplitude and instantaneous 
frequency of PF component combinations, it is supposed to gain the complete frequency 
distribution of the original signals. The whole idea of LMD is based on the local time scale 
characteristic of the signals, and then to decompose signals from high frequency to low frequency 
according to hierarchy gradually. Every component after decomposition is stationary and possesses 
physical meaning. For an arbitrary signal x (t), the decomposition process is as follows [13-16]:   

(1) Find all local extreme signals
in of original signals, and then calculate the average values of 

adjacent low extreme signals  

1( ) / 2i i im n n                                                                (1) 

Use straight lines to connect all adjacent average values 
im , and then apply average moving 

method to smooth to obtain local mean function 
11(t)m . 

(2) To obtain Envelope estimation: 
1 / 2i i ia n n    Use straight lines to connect adjacent 

envelope estimations 
ia , and then apply average moving method to smooth to obtain the envelope 

estimation function 
11(t)a . Decompose the local mean function 

11(t)m from the original signals x(t) 

and then obtain:  

11 11( ) ( ) ( )h t x t m t                                                             (2) 

(3) Utilize 
11( )h t  dividing envelope estimation function 

11(t)a  which aim to conduct mediation 

on 
11( )h t , this step obtains : 

11 11 11( ) ( ) / a ( )s t h t t  ,and then repeat the above steps is able to about 

the envelope estimation function 
12a ( )t of 

11( )h t , if 
12a ( )t not equal to 1, which illustrates that 

11( )s t  is not a pure frequency modulated (FM) signal, then it is needed to repeat the iterative 

process n times until such time as a pure frequency modulated (FM) signal 
1 ( )ns t appears. It means 

that the
1 ( )ns t ’s envelope estimation function 

1(n 1)a ( ) 1t  . 

(4) Multiple all envelope estimation functions during the iterative process to obtain envelope 
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signal (instantaneous amplitude function)  

1 11 12 1 1
1

a ( ) ( ) ( ) ( ) ( )
n

n q
q

t a t a t a t a t


 
                                              (3) 

(5) Multiple the envelope signal 
1( )a t  and pure frequency modulated (FM) signal 

1s ( )n t , it is 

able to obtain the first PF component of original signals, 
1 1 1( ) ( )s ( )nP t a t t , which contains the 

highest frequency component of original signals, and it is a single component 
amplitude—amplitude modulated (AM) signal. Its instantaneous amplitude is the envelope 
signal

1( )a t , in addition, its instantaneous frequency 
1( )f t  could be determined from the pure 

frequency modulated (FM) signal. 
(6) Separate the first PF component 

1( )p t  from the original signals ( )x t out to gain a new signal 

1( )u t , regard 
1( )u t  as raw data and then repeat above steps, k cycle times, until

ku  is a monotonic 

function appearing.  

1 1

2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )k k

u t x t p t

u t x t p t

u t x t p t

 
  


  



                                                             (4) 

(7) The original signals ( )x t can be reconstructed by all PF components and
ku  

1

( ) ( ) ( )
k

p k
p

x t p t u t


 
                                                          (5) 

In the formula (5), if we recombinant all instantaneous frequency and instantaneous amplitude of 
all PF components according to the time-- frequency - three-dimensional distribution, it is able to 
obtain the complete time and frequency distribution of the original signals based on LMD 
decomposition.  

Derived from the above decomposition process of LMD, it is found that it would lead to end 
effects. The key reason is that information of local extreme points are needed to obtain local 
extreme function and envelope estimation function, in which the local extreme function is gained 
from the straight lines which are connected by average values of adjacent extreme points during 
continuous smoothing process. The envelope estimation function is obtained from straight lines 
which are connected by absolute difference adjacent extreme points of during continuous smoothing 
process. However, the two end points of data may not necessarily be the extreme signals, therefore 
the resulting local average curve and the envelope estimation curve being at both ends of the data is 
unreasonable. 

The End Points Extension based on Gaussian Process 

Gaussian Process. Gaussian process (Gaussian Process, GP) is a recently developed new machine 
learning technique. The Gaussian process has rigorous theoretical statistical learning theories and 
foundations, which possess good adaptability to deal with complex problems of high dimensionality, 
sample timber and nonlinearity and so on, and obtain prediction accuracy and probability 
scientifically, which is a preferred non linear learning method [11, 12]. The statistical characteristics 
of Gaussian Process depend on its mean function and covariance function. The conendrable 
regression model[17-19]: 

( )y f x                                                                    (6) 

In formula (6), x  is input vector，y  is observation，noise 
2(0, )nN �

. According to Bayesian 

416



 

posterior probability formula, it is able to get the predicted value expectation and variance of 'y  

respectively:  

'

' 2 1( , )[ ( , ) ]n ny
C x X C X X I y   

                                                      
(7) 

'

2 ' ' ' 2 1 '( , ) ( , )[ ( , ) ] ( , )n ny
C x x C x X C X X I C X x                                             (8) 

In Gaussian Process, covariance function Gaussian process is equivalent to the kernel function 
commonly used covariance function is index squared covariance, which is: 

2 21
( , ) exp[ ( ) ( )]

2
T ij

i j f i j i j nC x x x x M x x                                               (9) 

In formula (9), 2
f  

is the signal variance of kernel function; 2( )M diag l  is the diagonal 

matrix of hyper parameter, l  is the variance scale; and ij  is the Kronecker symbol. 

Let  2 3, ,f nM    as hyper parameter. The optimal parameters are generally obtained by 

super-logarithmic maximum likelihood method. Like negative log-likelihood function and hyper 
parameter   as follows: 

11 1
( ) log log 2

2 2 2
T n

L y C y C    
  

                                          (10) 

1( ) 1
[( ) ]

2
T

i i

L C
tr C

 
 

 
 

 
                                                  (11) 

In formula, 1C y  . 

Particle Swarm Algorithm to Optimization the GP Hyper Parameters. Particle Swarm 
Optimization (PSO) is a field of computational intelligence, in addition to the ant colony algorithm, 
the algorithm of a fish swarm intelligence optimization algorithm. PSO algorithm firstly initializes a 
group of particles in the feasible solution space, and each particle represents a potential optimal 
extremal optimization problem with the three indicators of location, speed and fitness value to 
represent the particle characteristics. Adaptation value is calculated by adaptation function, which 
representing the quality of particles. Particles move in the solution space. By tracking Pbest and 
Gbest, it is able to update individual position groups. Pbest refers to the calculated best position for 
adaptation among all locations which individual experienced, while Gbest refers to the optimum 
position for adaptation for the all particles. Every time particle updated every position, an 
adaptation value would be calculated. It is able to compare the adaptation value, Pbest and Gbest of 
new particle to update the new locations of Pbest and Gbest. 

Suppose in a D dimension search space, the population composed by 
n particles 1 2( , , , )nX X X X  , wherein the number i particle is represented as a D  dimension 

vector T
1 2( , , , )i i i iDX x x x  , representing the position of the number i particle in D dimensional 

search space, also represents a potential solution to the problem. Based on objective function it is 
able to calculate the corresponding adaptation value of each particle location iX . The velocity of 

number i particle is T
1 2( , , )i i i iDV V V V ， , the Pbest is T

1 2( , , )i i i iDP P P P ，  and Gbest is 
T

1 2( , , )g g g gDP P P P ， . 

In each iteration process, the particles utilize Pbest and Gbest to update its velocity and position, 
which are  
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 1
1 1 2 2( )+ ( )k k k k k k

id id id id gd gdV V c r P X c r P X                                            (12) 

1 1+k k k
id id idX X V                                                               (13) 

where,   is the inertia weight; 1, 2, ,d D  ; 1, 2, ,i n  ; k  is the current number of iteration; 

idV  is the velocity of the particles; 1c and 2c are non-negative constants, becoming acceleration 

factor; 1r and 2r  are random numbers which are distributed in the range of [0,1]. 

For a Gaussian process, the parameters of kernel functions and likelihood function play a 
decisive role in Gaussian process modeling learning. Gaussian processes using traditional conjugate 
gradient method to search parameters, whereas it present high dependence on the initial value, the 
iteration number is difficult to determine, in addition, it is easy to access local optima. Therefore, 
the authors used PSO method to optimize the parameter of Gaussian process’ kernel function, then 
to obtain PSO-GP algorithm, concrete steps are as follows [24-26]: 

1) Based on observational data sample, the data is divided into a training set and test set; 
2) Do Initial settings. To determine the size of the particles, the number of iterations, the initial 

velocity of the particles and particles’ initial position, each particles vector corresponds to a 
sequence parameter, namely the parameters of the kernel function. Different kernel functions 
correspond to different hyper parameters. Regard NN kernel function as example, [ , ]x l sf . 

3) Compared model with sample to conduct training and learning, then to calculate the 
adaptation value of each particle. The adaptation values are derived from the adaptation functions. 
If defines  

2

,
1

1
min ( )

n

i i
l sf

i

y y
n





                                                           (14) 

In formula, iy  is the true value; iy


 is the predicted value; n  is the number of samples; 

4) According to current hyper parameters l  and sf , it is able to establish GP model to calculate 
the adaptation value through the formula (14); 

5) Memorize corresponding Pbest and Gbest of individual and group‘s optimal adaptation value; 
6) Based on formula (12) and (13) to update the particles’ velocity and position, and search for 

better l and sf ; 
7) Harness hyper parameters obtained from the use of PSO optimization on test samples, and 

then to gain the prediction value of signal sequence extreme points. 
Data Extension Method Based on PSO-GP. According to the two main effective factors of LMD 
end effects: extreme points and the distances between them. Extracted from original data to obtain 
maximum point, minimum point and the distance between the extreme points respectively, and then 

to divide to three different group sequence Jd¸ Jx, D. Set them separately as:  

 dndddd JJJJJ ,,,, 321   
 xnxxxx JJJJJ ,,,, 321   
 nDDDDD ,,,, 321                                                        (15) 

Firstly we could use PSO-GP model to conduct extension to the right end of original data, which 
is sequences’ prediction based on PSO-GP model formula (15). Each sequence only need three 
predictive values and then combines these three sequences predicted values together, thus making 
the extension to right end of the original data.  

Conduct reverse process on formula (15) and results are shown as the formula (16): 

 1)2()1(
1 ,,,, dndnddn JJJJJ

d


 
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 1)2()1(
1 ,,,, xnxnxxn JJJJJ

x


 
 

  1)2(1
1 ,,,, DDDDD nnn 
 

                                                 (16) 
In a similar way, it is possible to conduct prediction on the left end of original data and then to 

proceed the extension to the left end. Finally combining together, we get the final extension data. 

The Simulation Signal Analysis 

In order to verify the feasibility of this method, we take three sine and cosine superimposed 
signal to analyze, the signal expression is x = cos (2 * pi. * 5 * t) + 2 * sin (2 * pi. * 25 * t) + 3 * 
cos (2 * pi. * 100 * t), [0,1]t .According to the trend and taking into account Gaussian process, it 
is able to select more suitable covariance function to conduct training. Select the part of extreme 
point sequences as training samples and select another part as the test samples, finally conduct 
extension from the left and right end. According to the LMD decomposition principle, only three 
maximum and minimum extension points from the left and right ends are needed.  

Decomposing signal x(t) by LMD decomposition methods directly, the results are shown in 
Figure1, PF1-PF5 boundaries occurred serious distortions. From Hilbert spectrum (Fig. 2), it can be 
found that there are obvious distortions appearing in both two ends and edge divergence 
phenomenon presenting. Fig 3 and 4 are the results of endpoint extension’s LMD decomposition 
and Hilbert spectrum through PSO-GP algorithms. Compared with decomposition results without 
endpoint extension, it is obvious that edge divergence phenomenon have improved a lot, the residue 
was significantly less than the amount of direct decomposition. To further verify the effect of the 
end effect to improve the situation, the article harnesses three indicators of LMD end effect to 
evaluate. 

1) Energy aspect: the essence of the end effect is the envelope signal distortion, which produce a 
number of fraudulent, so that all PF component of the total energy will increase, therefore the use of 
energy exploded around to assess the impact of endpoint effects [28, 29]. 

2

1

n

i orginal
i

orginal

PF PF

PF









                                                      (17) 

whereby, orginalPF  represents the original effective signal values; iPF  denotes a modal component 

of number i ; n is the total number of PF  (including the residual components of LMD); the 
smaller the  value, indicating less end effect, which means that better endpoint extension results.  

2) Compare modal component from LMD decomposition and corresponding parameter  of 
original signals to appraise the accuracy of PF . 

cov( ( ), ( ))
( ( ), ( ))

( ) ( )
i i

i i i

i i

x t PF t
x t PF t

x PF


 
                                              (18) 

In the formula, cov()  represents covariance; () represents the variance; iPF  denotes a modal 

component of number i PF ; ix  represents the original signal corresponding to the constituent 

components. The higher the   value, indicating that the inhibitory effect end effect is better.  
3) Compare different methods of computing time t  (unit: s), to ensure the treatment effect in the 

same time, try to avoid overly complex algorithm. 
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Fig. 1 Decomposition of LMD without extrension. 

 

 
Fig. 2 Hilbert-huang spectrum without ertension. 

                          
Fig. 3 Decomposition of ertension by PSO-GP algorithm. 
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Fig. 4 Hilbert-huang spectrum by PSO-GP algorithm. 
 

This article uses PSO Gaussian process method to conduct endpoint extension with using 
MATLAB program to proceed LMD local mean decomposition. Signal decomposition components 
are shown in Fig. 1 and Fig 3. It is found in the figure that the signal decompositions without end 
effect present noticeable swing. Fig. 3 and Fig. 4 adopt PSO-GP algorithm to conduct endpoint 
extension. From signal decomposition figure and Hilbert spectrum, it could be seen that there are 
nearly no swing on both ends of signal decompositions, as well as no fluctuation in Hilbert 
spectrum figure. To further verify the effect of the proposed algorithm’s improving effect offend 
effect in the article, three types of evaluation index are used to evaluate, which could be seen in 
Table 1. 

Table 1. Comparision of methods of end effect. 

Signal Evaluation Index Without extension PSO-GP method

x(t) 

  0.0644 0.0288 

1PF  0.9960 0.9962 

2PF  0.9923 0.9986 

3PF  0.9496 0.9991 

t  0.5294 2.1773 

Mechanical Engineering Experiment and Results Analysis 

In reality, the mechanical failure signals are usually periodic, while partially have random 
features. Therefore, this paper investigates the antifriction bearing data of single point drive end 
failures and fan end failures collected by the US Case Western Reserve University laboratory. The 
failures have diameters ranging from 0.007 inch to 0.040 inch and occur at inner races, balls and 
outer races. The vibration data of testing power-driven machine records power load from 0 to 3 
horsepower (1797 to 1720 rpm). The vibration signal is collected by a 16-channel DAT recorder, 
and processed with MATLAB. The author adopts covNNone nerve net function and meanZero 
mean function to conduct a trial forecast of extremum serial of the signals. Afterwards, LMD 
decomposition of the signals is conducted. The decomposition result is shown in Fig. 7-10, with the 
original signals shown in Fig. 6. The test parameters adopted is shown in Table 2. 

 
Table 2. Experimental parameters. 

Bearing type 
Sampling 

frequency/KHZ
Rotate 

speed(r.min)

Fault 
size 
/mm 

6205-2RS(SKF) 48 1797 0.356 
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Fig. 5 Experimental device.                    Fig. 6 The part of origin signal. 
 

 
Fig. 7 Decomposition of LMD without extrension and origin signal. 

 

 
Fig. 8 Hilbert-Huang spectrum without ertension. 
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Fig. 9 Decomposition of ertension by PSO-GP algorithm. 

 

 
Fig. 10 Hilbert-huang spectrum by PSO-GP algorithm. 

 
From Fig. 7-10, it is clearly shown that by using PSO-GP arithmetic, original column can be 

effectively continued, thus weakening the adverse effect of end effect on LMD decomposition. The 
decomposition components attained is compared with the decomposition components of entire 
signal sequence. Fig. 8 and 10 is the comparison of Hilbert spectrum. As the sample signal sequence 
is relatively short, the comparison shows no clear result. To further test the level of end effect 
improvement, two measures are adopted to evaluate the inhibitory effect of factors on end effect. 
The evaluation result is shown in Table 3. 

 
Table 3. Comparision of methods of end effect. 

Evaluation 
Index 

Without 
extension 

PSO-GP 
method 

  0.4672 0.2755 

1PF  0.9989 0.9999 

2PF  0.9714 0.9996 

3PF  0.8563 0.9941 

4PF  0.1115 0.8826 

5PF  0.2821 0.3482 
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Conclusion 

Focused on the problem of LMD’s end effect and based on theoretical foundation of LMD, the 
authors analyzed the reasons for end effect deeply. In view of limitation of traditional endpoint 
extension under the circumstance of dealing with non-linear and non-stationary signals, the authors 
consider the high adaptability of Gaussian process when tackling non-linear signals, combined with 
consideration of hyper parameters having the possibility to be the local optimal value. Then particle 
swarm algorithm is utilized to optimize hyper parameter, which aims to improve the accuracy of GP 
algorithms endpoint extension further, as well as apply it in simulation signals and practical 
mechanical vibration signals. Through theoretical analysis and practical calculation, PSO-GP 
algorithm can effectively suppress the influence of end effect. Through Hilbert-Huang spectrum and 
each evaluation index, it is found that based on PSO-GP, LMD decomposition can be a good 
method of inhibiting end effect during LMD decomposition, which improve the accuracy of LMD 
decomposition, try its best to preserve the internal characteristics of the signal and avoid end effect 
polluting internal signal sequences. Therefore this proposal method in this article has good 
adaptability, as well as excellent ability in normal inhibition of end effect and is easy to calculate 
and harness. 
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